A Review on

Ontology Design Methodology

Tommaso Agnoloni
Lorenzo Bacci

extracts from:

Computational Ontologies

Aldo Gangemi
Valentina Presutti
Semantic Technology Lab (ISTC-CNR), Roma
{aldo.gangemi, valentina. presutti}@istc.cnr.it

Credits:

Eva Blomqyvist, Sean Bechhofer, Kingsley |dehen, Fabien Gandon,
Harry Halpin, Jim Hendler, Tim Berners-Lee

©

[NeOn

NeOn Methodology for Building Ontology
Networks

Asuncion Gomez-Pérez
Mari Carmen Suarez-Figueroa

{azum, mesvares} @ fi upm es
Cwralogy Engineermg Group. Departamento de Irehzencia Amificial
F 2 T i

Univaiat Do & vadcd
ImtnMY niversidad Politécrica de Madn:
Enningse
September 29", 2008
I.mun EKAW 2008. Sicily, Italy

What is Ontology Design?

= Ontologies are artifacts

= Have a structure (linguistic, “taxonomical”, logical)

= Their function is to “encode” a description of the world (actual, possible, counterfactual,
impossible,desired, etc.) for some purpose

= Ontologies must match both domain and task

= Allow the description of the entities (“domain”) whose attributes and relations are concerned by some

purpose, e.g. drugs as commodities that contain preparations of selected compounds having an
expected application within medical treatments

= Serve a purpose (“task”), e.g. finding piperocaine-based anesthetic drugs, integrating a drug database
with a compound database, matching available resources to devised drug production plans, etc.

= Ontologies have a lifecycle

= Are created, evaluated, fixed, and exploited just like any artifact

= Their lifecycle has some original characteristics regarding:
Data
Project and workflow types
Argumentation structures

Design patterns

Ontology Specification

Ontology (Requirements) Specification is a collection of requirements that the
ontology should fulfill, e.g. reasons to build the ontology, target group, intended uses,
possibly reached through a consensus process.

Requirements are those needs that the ontology to be built should represent/cover.

Competency Questions (CQs) are questions that the ontology to be built should be
able to answer.

CQs are a way to represent requirements.

CQs can be written in natural language (NL) and can be formalized in ontology
qguery languages (e.g. SPARQL).

Ontology Specification / example

Story
= Decompose story in sentences
= Write instance-free sentences

= Transform into competency questions

= Sentence: Charlie Parker is the alto sax player on Lover Man, Dial, 1946

= Charlie Parker (person)
= the alto sax player (player role)
= on Lover Man (tune)
= Dial (publisher)
= 1946 (recording year)
= CQs
= what persons do play a musical instrument?
= on what tune?
= for what publisher?

= in what recording year?

NeOn Methodology

[
i |
Ligsre, Oomaln Repeta sand OOT
e
.ll:".'l._

ipsrs, Oomp n Experts snd ODT

freees,

Lsars, Domain Expens and 0OT

T vl
Ml]

Users, Dompin Expets and ODT &

ﬁéﬁ“ﬁ :

Uz, Ooman Experts and Q0T

- 7

J-"'. el ol N
4 cmelapie [

/! nesds [/

Task 1. Idantify purpose, scofes
and level of formality

L}

Task 2. Idantify intendad users

Task 3. identify intended uses

Task 4. |dentify requirements +———

Task 5. Group requirsments

o
-
e o " " "
_E;.j-"ﬁ Task 6. Validate the set of requiremenis
Fa -
e and Dorain Esparis
-;_"'-‘ A ey Wl -‘"':;. = o
s e
B33 o
T
L.]
-
e g '
i — | Task 7. Priaritize requiremeants
|'."'.II
Jurrs, Dormsn Especs and BOT
h Y .I;r-
) = i % ! !
4 Task 8. Ex1r.=';l:: tarrrlr'f:-logy and its \ s e o ORED /
i QUENCY i g /
A ¥ N

Coriodoygy Dissslopinet Taar

-2005-027595

NeOn-project.org

Input: a set of ontological needs

*Objective: identifying the ontology
requirements

» Techniques: writing the requirements in Natural
Language in the form of competency

questions (CQs)

« Tools: mind map tools, excel, and collaborative
tools

» Qutput: a list of competency questions written in
Natural Language and a set of answers for the CQs

A B
1 O e e E O
2 |CQ1 | What is the Job Seeker Name?
3 |CQA2 What is the Job Szeker nationality?
4 |CQ3 | When is the Job Seeker birthdate?
5 |CQ4 | What is the Job S=zeker contact information?
6 |CQ5 | What is the Job Szeker current job?
7 |CQ6 | What is the Job Szeker desired job?
8 |CQ7 What are the Job Seeker desired working conditions?
9 |CQ8 | What kind of contract does the Job Seeker want?
10 |CQY | How much salary does the Job Seeker want to earn?

11 |CQ10] What is the Job Szeker education level?

12 |CQ11| What is the Job Szeker work experience?

13 |CQ12 What is the Job Seeker knowledge?

14 |CQ13 What is the Job Seeker expertise?

15 [CQ14| What are the Job Seeker skills?

16 |CQ15 What publications does the Job Seeker have?

Resources for the Semantic Web

= Metadata

= Resources are marked-up with descriptions of their content. No good unless
everyone speaks the same language

= Terminologies

= provide shared and common vocabularies of a domain, so search engines,
agents, authors and users can communicate. No good unless everyone means
the same thing

= Ontologies

= provide a shared and common understanding of a domain that can be
communicated across people and applications, and will play a major role in
supporting information exchange and discovery

RDF Data Model

= Provides a simple data model based on triples
= Statements are <subject, predicate, object> triples:

= <Sean,hasColleague,lan> hasColleague
Sean » |an

= Can be represented as a graph:
= Statements describe properties of resources
= Aresource is any object that can be pointed to by a URI:

= The generic set of all names/addresses that are short strings that refer to
resources

= adocument, a picture, a paragraph on the Web,
http://www.cs.man.ac.uk/index.html, a book in the library, a real person (?),
isbn://0141184280

= Properties themselves are also resources (URIS)

= Single (simple) data model.

= Syntactic consistency between names (URISs).

= Low level integration of data.

Ontology Design Patterns (ODP)

OWL gives us logical language constructs, but does not give us any guidelines

on how to use them in order to solve our tasks. E.g. modeling something as a
class or an object property is mostly arbitrary

... OWL is not enough for building a good ontology and we cannot ask all web
users either to learn logic, or to study ontology design

Ontology Design Patterns (ODP)

Reusable solutions are described as “Ontology Design Patterns”, which help
reducing arbitrariness without asking for sophisticated skills ...

DEFINITION:

An Ontology Design Pattern is a reusable modeling solution to
solve a recurrent ontology design problem

OPs and patterns in other disciplines

= QOur concept of “pattern” is associable with the wider “good/best
practice” of software engineering.

= Itincludes a wider range of solution types. For example:

= naming conventions in software engineering are considered good
practices, they are notdesign patterns.

= In ontology engineering “naming” is an important design activity (it
can have a strong impact on the usage of the ontology e.g., for
selection, mapping, etc.).

= We distinguish the different types of OPs by grouping them into six
families.

= Each family addresses different kinds of problems, and can be
represented with different levels of formality.

Types of Ontology Design Patterns (OPs)

T W T—

@ odsolOntologyDesignPattern

’ & ContentOP ® StructuraloP ® LexicoSyntacticOP @ ReasoningOP | PresentationOP & Correspondence0P
P A I TN
 ArchitecturalOP Logicalop NamingOP) AnnotationQP () ReengineeringOP £ MappingQP
3 el
® LogicalMacro {0 SchemaReengineeringOP) RefactoringOP
/7
® TransformationOP

= We also distinguish between ontological resources that are not OPs
and Ontology Design Anti-Patterns (AntiOPS)

= Interpreting domain and range

= Closed and Open Worlds

Disjointness

= By default, primitive classes are not disjoint.

= Unless we explicitly say so, the description (Animal and Vegetable) is
not inconsistent.

= Similarly, with individuals -- the so-called Unigue Name Assumption
(often present in DL languages) does not hold, and individuals are not
considered to be distinct unless explicitly asserted to be so.

Domain and Range

= OWL allows us to specify the domain and range of properties.
= Note that this is not interpreted as a constraint as you might expect.

= Rather, the domain and range assertions allow us to make inferences
about individuals.

= Consider the following:

= ObjectProperty(employs domain(Company) range(Person))
Individual(IBM value(employs Jim))

= If we havent said anything else about IBM or Jim, this is not an error.
However, we can now infer that IBM is a Company and Jim is a
Person.

The standard semantics of OWL makes an Open World Assumption
(OWA).

We cannot assume that all information is known about all the
Individuals in a domain.

Negation as contradiction
Anything might be true unless it can be proven false

Closed World Assumption (CWA)

Named individuals are the only individuals in the domain
Negation as failure.

If we cant deduce that x is an A, then we know it must be a (-
A).

@ odsol:OntologyDesignPatter

(]\

® ContentOP ® Structuralop # LexicoSyntacticOP @ ReasoningOP - PresentationOP © CorrespondenceOP
@ ArchitecturaloP § Logicalop © NamingOP © AnnotationOP () ReengineeringOP © Mapping0P
§ LogicaMacro SchemaReengineeringOP RefactoringOP

o

/V

@ TransformationOP

Presentation OPs

Definition

= Presentation OPs deal with usability and readability of ontologies from a
user perspective.

= They are meant as good practices that support the reuse of patterns by
facilitating their evaluation and selection.

= Two types:
= Naming Ops
= Annotation OPs

Naming OPs
Definition

= Naming OPs are conventions on how to create names for namespaces,
files, and ontology elements in general (classes, properties, etc.).

= Naming OPs are good practices that boost ontology readability and
understanding by humans, by supporting homogeneity in naming
procedures.

Examples of Naming OPs 1/2

= Namespace declared for ontologies.

= |tis recommended to use the base URI of the organization that publishes
the ontology

= e.g. http://www.w3.org for the W3C, http://www.fao.org for the FAO,
http://www.ittig.cnr.it

= followed by a reference directory for the ontologies

= e.g. http://www.ittig.cnr.it/ontologies/

= |tis also important to choose an approach for encoding versioning, either on
the name, or on the reference directory

http://www.ittig.cnr.it/ontologies/

Examples of Naming OPs 2/2

Class names
They should not contain plurals, unless explicitly required by the context

= Names like Areas is considered bad practice, if e.g. an instance of the class
Areas is a single area, not a collection of areas

It is also recommended to use readable names instead of e.g. alphanumerical codes

= Non-readable name can be used (even if not recommended) if associated to
proper annotations (see Annotation OPS)

It is useful to include the name of the parent class as a suffix of the class name

= e.g. MarineArea rdfs:subClassOf Area

Class names conventionally start with a capital letter

= e.g. Area instead of area

Annotation OPs

= Annotation OPs provide annotation properties or annotation property

schemas that are meant to improve the understandability of
ontologies and their elements

= Annotation properties:

= http://lwww.ontologydesignpatterns.org/schemas/cpannotationschema.owl

= annotation of OWL implementation of CPs

http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

Examples of Annotation OPs

RDF Schema labels and comments (crucial for manual selection and
evaluation)

Each class and property should be annotated with meaningful labels

= 1.e., by means of the annotation property rdfs:label, with also translations
in differentlanguages.

Each ontology and ontology element should be annotated with the rationale
they are based on

= l.e., by means of the annotation property rdfs:comment

CPs encode conceptual, rather than logical design patterns.

Logical OPs solve design problems independently of a particular conceptualization

CPs are patterns for solving design problems for the domain classes and properties that
populate an ontology, therefore they address content problems

they are content-dependent

Modeling problems solved by CPs have two components: domain and requirements.

A same domain can have many requirements (e.g. different scenarios in a clinical
information context)

A same requirement can be found in different domains (e.g. different domains with a same
“expert finding” scenario)

CPs are strictly related to small use cases i.e., each of them is built out of a domain task
A typical way of capturing requirements is by means of competency questions

A competency question is a typical query that an expert might want to submit to a
knowledge base of its target domain, for a certain task.

Formal characteristics of OWL CPs

= (Small) ontology morphing
= Downward subsumption of at least one element

= Mostly graphs of classes and properties that are self-connected through axioms
(subClassOf, equivalentClass, domain, range, disjointFrom)

= Usually there is an underlying n-ary relation (sometimes polymorphic)

Requirement-covering components

They are defined in terms of the requirements (or cqs) they satisfy

Small, autonomous components.

A CP is a small, autonomous ontology and ensures a certain set of
inferences to be enabled on its corresponding knowledge base.

Smallness and autonomy of CPs facilitate ontology designers:

composing CPs enables them to govern the complexity of the whole
ontology.

CPs require a critical size, so that their diagrammatical visualizations are
aesthetically acceptable and easily memorizable.

CP visualization must be intuitive and compact, and should catch
relevant, “core” notions of a domain.

Reasoning-relevant components

They allow some form of inference (minimal axiomatization, €.g. not an
Isolated class)

Linguistically relevant components.

Many CPs nicely match linguistic patterns called frames.
A frame can be described as a lexically founded ontology design pattern.

Frames typically encode argument structures for verbs, e.g. the
frame Desiring associates elements (or “semantic roles”) such as
Experiencer, Event, FocalParticipant, LocationOfEvent, etc.

Best practice components.
A CP should be used to describe a “best practice” of modelling.
Best practices are intended as local, thus derived from experts.

The quality of CPs is currently based on the personal experience and
taste of the proposers, or on the provenance of the knowledge resource
where the pattern comes from.

Catalogue

= A catalogue of Cps

navigation
= Main page
= Modeling lesues
= Proposed Content OPs
= Reviews
= Catalogue
Feedback
= Domains

users
= Requestan ODP
account

Post a modeling issue
= Propose a Content OP
= Post your Feedback

= Add a Domain

= List of Categories

= List of Properties
guality commitiee
= Post a Review

content op publis hers

= Create a catalogue
entry

istrator

= Template List

= Form list

= Create a category

[]

Create a property

[]

Create a template
= Create a form

The OntolegyDesignPatterns.org is a semantic web portal dedicated to ontology design patterns (OPs) for the Semantic Web developed in the

context of the &

http://www.ontologydesignpatterns.org (odp-web)

catalogue entry

i 2 84221223 1tak for thisip log in / create account
article discussion view source history

Ontology Design Patterns . org (ODP)

What is ODP

Latest ODP News!

= 5.June 2008 11:11 Mews at ODFP ponal! &2 (by EnricoDaga)
project.

ODP People

ODP Users are all semantic web users who are interested in best practices of ontology design and ontology engineering. They own an ODP account that can be required from the ODP account request page.

ODP official catalogue is managed by a typical reviewing mechanism. For this reason ODP has two editors in chief:

= Aldo Gangemi
= Valentina Presutti

and a Quality Committee.
Furthermaore, the administrators take care of the design and maintenance of ODP, while the Quality Committee assures the guality of the official catalogue.
Content and Functionalities

COPs are of different types. Currently ODP manages Content OPs. Next step will be to manage Re-engineering OPs and Logical OPs.

= Community: the ODP user community area. This area is completely open to ODP user contribution and discussions. Currently, as explicit feature, ODP provides its users with a facility for sharing experienced modeling/design

problems with the community, in order to find some help to solve them. New features will be added based on emerging reguiremants.

« Proposed Content OPs: area for Proposed Content OF submissions. This area collects all proposals of Content OPs. Users are guided through a specific form for compiling their proposal. The proposed patterns should come
from practical and succesful experiences of ontology development All proposed patterns belong to the ODP namespace named Submissions. Typically, proposed CPs include a downloadable OWL implementation.

« Reviews: area that collects all reviews of proposed Content OPs. Proposed content OPs are reviewed by at least two members of the Quality Committee, formed by ontology experts. Reviews are all published in the Reviews

area. The aim of the reviews is twofold. On one hand, they provide ODP users with ontology design rationales related to a specific domain issue. On the other hand, reviews provide the author of a certain Content OF with
guidelines far fixing possible problems to the aim of certifying the Content OF.

= Catalogue: the official Content OF catalogue. This area collects all Content OP's that are certified by the ODP Quality Committee. The only difference between the certified and the proposed Content OPs is that the formers are

guaranteed to be fully described (wrt to CDP specification), certified by the ODP Quality Committee, and always associated with & reusable OWL implementation available for download.

= Feedback: area where ODP users can give us feedbacks for improving ODF web portal through a specific form. ODP administratars uses this area to collect new requirements and discover issues to be solved

« Domain: the list of domains. This page lists all domains that are defined in ODP, and provides users with a facility to create new ones. Each Content OF or Modeling Issue is associated 1o a domain, this is why this page is
impartant. Before to propose your Content OF or to past a madeling issue be sure your domain is already on the list or create a page for it.

i

An example of CP: Agent Role

or:Role
[orzisRoleOf @ or:Object

classisClassifiedBy

ArisRoleOf

or:Object
W classiisClassifiedBy @ or:Role
[orhasRole :orRole

‘ Agent

Elements

The AgentRole Content OP locally defines the following ontology elements:

‘ Agent (owl:Class)
Any agentive Object, either physical, or social.
i» Agent page

Reviews about AgentRole
The are no reviews.

Go back to the List of Content OP proposals

The time indexed person role CP allows to represent temporariness of roles
played by persons. It can be generalized for including objects or,
alternatively the n-ary classification CP can be specialized in order to obtain
the same expressivity.

The elements of this Content OP are added with the elements of its
components and/or the elements of the Content OPs it is a specialization of.

AgentRole
Submitted by ValentinaPresutti
Name agent role

Also Known As

Intent To represent agents and the roles they play.

Domains Management, Organization, Scheduling

Competency which agent does play this role?, what is the role that played by that agent?

Questions

Reusable OWL hitp:/mww.ontologydesignpatterns.org/cp/owl/agentrole.owl &

Building Block

Consequences This CP allows designers to make assertions on roles played by agents
without involving the agents that play that roles, and vice versa. It does not
allow to express temporariness of roles.

Scenarios She greeted us all in her various roles of mother, friend, and daughter.

Known Uses

Web

References

Other

References

Examples (OWL hitp://www.ontologydesignpatterns.org/cp/examples/agentrole/ex1.owl &
files)

Extracted From http:.//www.loa-cnr.it/ontologies/DUL.owl &

Reengineered

From

Has

Components

Specialization Submissions:Objectrole
of

Related CPs

An example of CP: Agent Role Instantiation

or:Role

Person agentrole:Agent
rdf:type

& student

rdf:tipe rdfftype ‘YPE rdfs:subClassOf

& bacci >~ 4 supporter
or:hasRole

IttigRole

‘type

& researcher

An example of CP: Situation

Elements

The Situation Content OF locally defines the following onfology elements:

“ Entity {owl:Class)

Anything: real. possible, or imaginary, which some maodeller wants to talk about for some
purpose.

i Entity page

“ Situation (owl-Class)

A combination of circumstances involving a set of entities. It can be seen as a relational
context, reifying a relation among the entities involved. In fact, it provides an explicit
vocabulary to the n-ary relation & Logical OF

iy Situation page

H‘ has setting (owl:ObjectProperty)

a relation between entities and situations, e.g. this moming I've prepared my coffee with a new
fantastic Arabica (i.e_: (an amount of) a new fantastic Arabica hasSefting the preparation of
my coffee this morning). is setting for is its inverse.

or hasSetting page

é‘d‘ is setting for (owl:ObjectProperty)

Inverse property of has setting

& isSeltingFor page

| 0 Entity
|I- hasSetting : Situation

sSettingFor

isSettingFor some Entity |

haz5etting

| & Situation
||- isSettingFor : Entity

Submitted by
Name

Also Known As
Intent

Domains

Competency
Questions

Reusable OWL
Building Block

Consequences

Scenarios
Known Uses
Web References
Other References

Examples (OWL
files)

Extracted From

Reengineered
From

Has Components
Specialization Of
Related CPs

Situation
WalentinaPresutti

Situation

To represent facts, circumstances, observed contexts.

General

What entities are in the seeting of a certain situation?
http://www.ontologydesignpatterns.org/cpiowl/situation.owl &
This CP allows the designer to model both a certain situation, and the entities that are

invalved. It provides designers with a vocabulary for representing n-ary relations.

| prepared a coffee with my heater, 300 ml of water, and an Arabica coffes mix

http://www.ontologydesignpatterns.org/cp/examples/situation/coffee_ owl &

http:/fwww loa-cnr.itfontologies/DUL owl &7

Submissions:Description

An example of CP: Situation Instantiation

sit:Situation
/N & arabica_coffee_mix

rdf:type

ettingFor

>~ 4 amount_of_water_300m|

1’ preparation_of_arabica_coffee

sit:isSettingFor

sit:isSetting

,. my_red_heater

An example of CP: CollectionEntity

Elements

The CollectionEntity Content OF locally defines the following onfology elements:

& Collection {owl:Class)

Any container for entities that share one or more common properties. E_g. stone objects, the
nurses, the Louvre Aegyptian collection. A collection is not a logical class: a collection is a
first-arder entity, while a class is a second-order one.

i Collection page

a Entity (owl:Class)

Anything: real, possible, or imaginary, which some modeller wants to talk about for some
purpose.

i Entity page

f‘i K hasllember (owl:ObjectProperty)

A relation between collections and entities, e.g. ‘'my collection of saxophones includes an old
Adolphe Sax original alto’ {i.e. my collection has member an Adolphe Sax alto). The object
property isMemberOf is its inverse.

tr haslMember page

H‘ isMemberQf (owl:ObjectProperty)

The inverse of hasMember.

& isMemberQf page

| £) Entity

|[- isMemberOf : Collection

‘hasMember

dshemberOf

| & Collection
|I- hasMember : Entity

Submitted by
Name

Also Known As
Intent

Domains

Competency
Questions

Reusable OWL
Building Block

Consequences

Scenarios

Known Uses

Web References
Other References
Examples (OWL files)
Extracted From
Reengineered From
Has Components
Specialization Of
Related CPs

CollectionEntity
WalentinaPresutti
collection entity
collections, membership

To represent collections, and their entities, i.e. to represent membership.

Parts and Collections

Which collection this entity is member of?, Which are the members of this collection?
http:/fwww ontologydesignpatterns. org/cp/owl/collectionentity owl &'
It is possible to put sets in the domain of discourse through the class Collection. which

reyfies them.

The Louvre Aegyptian collection.

http:/fwww ontologydesignpatterns org/cp/examples/collectionentity/|STC owl &7

http:/fwww_loa-cnr.it/ontologies/DUL. owl &

An example of CP: Time Interval

@ Timelnterval Timelnterval
B hasintervalDate : date Submitted by ValentinaPresufii
BB hasintervalEndDate : date[0..1] Name time interval
BB hasintervalStartDate : date[0..1] Also Known As
Intent To represent time intervals.
Elements
Domains Time

The Timelnterval Confent OF locally defines the following anfology elemeanis:)) o) e -
Competency What is the end time of this interval ?, What is the starting time of this interval ?, Whatis the

Questions date of this time interval ?
‘ Time Interval (owl:Class) Reusable OWL http:/www ontologydesignpatierns.org/icplowltimeinterval.owl &
Building Block

Any reglon in & aimensional space that represents 1me.
Consequences The dates of the time interval are not part of the domain of discourse, they are datatype

values. If there is the need of reasoning about dates this Content OP should be used in
compaosition with the region Content OP.
Scenarios The time interval “January 2008" starts at 2008-01-01 and ends at and ends at
A datatype property that encodes values fiom xsd date for a time interval; & same time 2008-01-31.
interval can have more than one xed dale value: begin date, end date, date at which the
intarval holde, ae well as dates expreesed in differant formaits: xed g'Year, xed:dataTima,

ir Timeinterval page

;eu has interval date (ow!:DatatypePropearty)

Known Uaes

el Web
References

i hasintorvalDale page
Other

ue References

has interval start date (owl DatatypePrope

e 9 (v . Exampiles (OWL http-/www ontologydasignpattemns.org/cpexamplestimeintenalfanuary2008.owl @

The stan dale of & ime inerval, files)

i hasintervalSartDate page Extracted From
Reengineered

;Ou has interval end date (ow| DatatypaFroperty) From

Thie &na dats of & 1me (nEnEl .

: : Components

» hasinervalEndDale pa

‘ e Specialzation
of

Related CPs

(Re)use situations:
matching CPs covering against local problems

Covering

= The covering property expresses the fact that a CP satisfies a set CQ of
competency questions (cq1,..., cqn).

cov(CP, CQ)
= A cqi can be transformed to a query qi to be submitted to a knowledge base.

= A CP covers CQIifitis as expressive as it is needed to store the necessary
knowledge for answering q7, ... ,gn .

Local problems can be expressed in different ways:
use cases, scenarios, user requirements, local competency guestions (cgs), etc.
All can be transformed to local “cgs”.
Red Hot Chili Peppers recorded the Stadium Arcadium album during 2005
When did Red Hot Chili Peppers record the Stadium Arcadium album?
Which albums did Red Hot Chili Peppers record during 2005?

Local “cqs” are not usually at the same level of generality as the cgs of Cps
e.g., they may contain reference to instance element e.g. Stadium Arcadium

we need to abstract them
When did a certain band record a certain alboum?

Which albums did a certain band record during a certain time period?

What do we mean by matching a cq to Cps?

To compare the local cgs to the cgs covered by a CP in order to
evaluate the CP suitability for solving the local problems.

Ongoing work on automatic support for CP selection starting from local
cgs

parsing of requirements and extraction of cqs
formalization of cqs

NLP support to match cqgs terminology to CP lexicalizations
ontology matching

= Broader or narrower matching

= Partial matching

Import

Import is the basic mechanism for ontology reuse.

It is also the only one directly supported in the OWL vocabulary
= l.e., owlimport.

Import is applicable to ontologies, hence also to Cps.

If an ontology O2 imports an ontology O1, all the ontology elements and
OWL axioms from O1 are included in O2 .

The imported ontology elements and axioms cannot be modified

= |.e., the ontology elements and axioms are read-only entities for OZ2.

By importing a CP, an ontology ensures the set of inferences allowed by the
CP in its corresponding knowledge base.

Broader matching:

The cqgs covered by a CP are more general than the local ones.

The CP has firstly to be imported, then it has to be specialized in order
to cover the local scenarios.

Narrower matching:

The cqgs covered by a CP are more specific than the local ones.

The CP has firstly to be imported, then it has to be generalized in order
to cover the local scenarios.

Two usage operations are identified:
specialization

generalization

Specialization

= A content pattern CP2 specializes CP1 if at least one ontology element of
CP2 is subsumed by an ontology element of CP1

= |.e., either by rdfs:subClassOf or rdfs:subPropertyOf

| owl Thing
|I- ishMemberOf - Collection

|

| Collection
|I- hasMember : owl: Thing

owl Thing
collectionentity:isMemberOf : collectionentity:Collection

el

collectionentity:Collection Agent
collectionentity:hasMember : owl:Thing

T

Community
collectionentity:hasMember : Agent

Broader matching example

Consider the following scenario:

= aperson plays a certain role.

= it can be expressed by the competency question included in the following
set:

= CQ1={who did play a certain role?}
= From the previous example we know that

= cov(agent role, Req)

= where CQ is more general than CQ1

= We can import agent role (prefix ar:) and define the class Person in the
following way:

= Person rdfs:subClassOf ar:Agent

Partial matching

The CP does not cover all aspects of the local cqs

The local use case has to be partitioned into smaller pieces.
= One of these pieces will be covered by the selected CP.

= For the other pieces, other CPs have to be selected.

= All selected CPs have to be imported and composed.

= One additional usage operation is identified:

= composition

Composition

= The composition operation relates two CPs and results into a new ontology

= The resulting ontology is composed of the union of the ontology elements
and axioms from the two CPs, plus the axioms (e.g. disjointness,
equivalence, etc.) that are added in order to link the CPs

= The composition of CP1 and CP2 consists of creating a semantic
association between CP1 and CP2 by adding at least one new axiom, which
Involves ontology elements from both CP1 and CP2

= Typically, also new elements (“expansion”) are added when composing

Sample composition

timeinterval Timelnterval

M isTimelncludedin © situation:Situation
timeinterval:hasintervalDate : date
timeinterval:haslntervalEndDate : date[0..1]
timeinterval:hasIntervalStartDate : date[0..1]

owlThing

situation:has5etting : situation:Situation

situation:Situation

M atTime : timeinterval Timelnterval

M includesEvent : participation:Event

M includesOhbject : perticipation:hject
situation:isSettingFar : owlThing[1..]

JA

participation:Event

M izEventlncludedin : situation:Situation
participation:hasParticipant : participation:Object

participation:Ohject

M iz0hjectincludedin : situation:Situation
participation:isParticipantin : participation:Event

TimelndexedParticipation

M atTime : timeinterval Timelnterval[1..]

M includesEvent : participation:Event(1..]

M includesObject : participation:Ohbject|1..]
situation:isSettingFor © owlThing[3..]

Partial matching example

= For example, consider the following competency questions:
= cql : who did play a specific role in a certain period?
= cg2 : which role does a certain person have at a certain time?

= From previous examples we know that

= agent role covers partially cql and cg2, as it allows to represent agents
and the role they play

= time interval covers partially cgl and cg2, as it allows to represent time
intervals

= The ontology resulting from the composition of these two CPs covers both
cgl and cqg2

Expansion

= Expansion consists of adding new ontology elements and axioms to a CP.

= The resulting ontology is composed of the ontology elements and axioms of
the CP, plus the added ontology elements and axioms.

Where do CPs come from?

Content ontology design patterns (CPs) come from the experience of
ontology engineers in modeling foundational, core, or domain ontologies

There are four ways of creating CPs, which can be summarized as follows:

Reengineering from patterns expressed in other data models

Data model patterns, Lexical Frames, Workflow patterns, Knowledge
discovery patterns, etc.

Specialization/Generalization/Composition of other CPs
Extraction from reference ontologies (by cloning)

Creation by combining extraction, specialization, generalization,
composition, and expansion

= The clone operation consists of duplicating an ontology element, which is
used as a prototype.

Types of clone operation

Shallow clone

= consists of creating a new ontology element oe2 by duplicating an
existing ontology element oel . OWL restrictions of and axioms defined
for oel and oe2 will be exactly the same

Deep clone:

= consists of creating a new ontology element oe2 by duplicating an
existing ontology element oel , and by deep-cloning a new ontology
element for each one that is referred in oel 's axiomatization, recursively

Partial clone:

= consists of deep-cloning an ontology element, but by keeping only a
subset of its axioms, and of partial-cloning the kept elements, recursively

Some ontology design tools support the shallow clone operation
= e.g., TopBraid Composer

Deep clone and partial clone are not yet supported by any existing tool.

CP definition (finally!)

Definition

CPs are distinguished networked ontologies and have their own namespace

They cover a specific set CQ of competency questions (requirements),
which represent the problem they provide a solution for

A CP emerges from existing conceptual models and can be extracted from
a reference ontology (based on the clone operation), can be reengineered
from other conceptual models (e.g. data models), can be created by
composition of other CPs, by expansion of a CP, and either by
specialization or generalization of another CP

Main principles
divide & conquer

understand the task and express it by means of competency
questions

re-use “‘good” solutions i.e., ontology design patterns
evaluate the result against the task

Transform cq in SPARQL queries

Sample iteration

= Sentence: Charlie Parker is the alto sax player on Lover Man, Dial, 1946

= Charlie Parker (person)

= the alto sax player (player role)
= on Lover Man (tune)

= Dial (publisher)

= 1946 (recording year)

= CQs

= what persons do play a musical instrument?
= on what tune?
= for what publisher?
= in what recording year?
= Queries
= SELECT ?x ?y WHERE { ?x ?r ?y . ?x a :Person . ?y a :PlayerRole }
= SELECT ?x 2z WHERE { ?x ?r?y . ?x a :Person . ?x ?s ?z.?za:Tune}
= SELECT ?z?w WHERE { ?z ?t ?w . ?z a :Tune . ?w a :Publisher }
= SELECT ?z ?k WHERE { ?z :recordingYear ?k . ?za :Tune . ?k a xsd:gYear }

cont.d
= Retrieve/Match cgs to CPs, or possibly propose new ones

= agentrole.owl, timeindexedpersonrole.owl, timeinterval.owl, ...

= Specialize/Compose/Expand CPs to local cq terminology
= person-playerrole, playing-instrument-on-a-tune, playing-on-a-tune-in-recordingyear
= Populate Abox

= Person(CharlieParker), PlayerRole(AltoSaxPlayer), Tune(LoverMan),
Session(LoverManWithParkerOnDial), ..

= Run unit test/lterate until fixed
SELECT ?x ?y ?z ?w ?K
WHERE {

?2X?r?y.
?x a :Person .
?y a :PlayerRole .
?X?s ?z.
?z a:Tune.
2z 7t ?w.
?w a :Publisher .
?z :recordingYear ?k .
?k a xsd:gYear }
RESULTS: ?x=CharlieParker ?y=AltoSaxPlayer ?z=LoverMan ?w=Dial ?k=1946

Iteration with Content OPs

. Requirements are divided into small stories
. Get your story (local problem)
. divide & conquer

. read carefully the story and divide them into simple sentences s1,..,sn

= FOR EACH SENTENCE si

transform si to an instance-free sentence (“abstraction”)

= an instance can be either an individual or a property value (fact)

transform the instance-free sentence to local competency questions (cqs)
= translate local cqs to queries to be submitted to the knowledge base, and collect them in a unit test [12]
= match the CP coverage to the local cgs

= identify the CPs you need, and associate each CP with the local cgs it covers

= if any local competency question remains uncovered, define separate small ontologies that cover them,
and import them into the ontology. Treat these as CPs

= identify ontology elements to be specialized, and specialize them

= identify axioms and ontology elements to involve in the composition of chosen CPs, and compose them
= expand the ontology in order to cover uncovered competency question

= populate the ontology ABox with the instances from the story

= test using the collected queries and fix until all tests succeed

= END FOR

Ontology evaluation

Domain: entity types, expertise patterns

= Is the ontology appropriate to context?

= Task: competency questions

= Is the ontology appropriate to support relevant queries?
= Resources: tools and personnel

= |Is the ontology (structure, function, annotations) manageable and
costeffective?

= Direct measuring of graphs and annotations
= Black-box/glass-box measuring of admissibility wrt conceptualization
= |ndirect measuring via user feedback, and correlation

= Principles, diagnosis and trade-offs

Valentina Presutti and Aldo Gangemi. Content Ontology Design Patterns as Practical Building Blocks for
Web Ontologies. In Proceedings of the 27th International Conference on Conceptual Modeling (ER 2008)

Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, Jos Lehmann. Modelling Ontology Evaluation and
Validation. Y. Sure (ed.), Proceedings of the Third European Semantic Web Conference, Springer, 2006.

http://ontologydesignpatterns.org/index.php/Training:NeOn_2008_Tutorial_on_Computational _Ontologies

http://www.neon-project.org/

http://www.topquadrant.com/topbraid/composer/index.htmi

http://ontologydesignpatterns.org/index.php/Training:NeOn_2008_Tutorial_on_Computational_Ontologies
http://www.neon-project.org/
http://www.topquadrant.com/topbraid/composer/index.html

