

A Review on
Ontology Design Methodology

Tommaso Agnoloni
Lorenzo Bacci

extracts from:

What is Ontology Design?

 Ontologies are artifacts

 Have a structure (linguistic, “taxonomical”, logical)

 Their function is to “encode” a description of the world (actual, possible, counterfactual,
impossible,desired, etc.) for some purpose

 Ontologies must match both domain and task

 Allow the description of the entities (“domain”) whose attributes and relations are concerned by some
purpose, e.g. drugs as commodities that contain preparations of selected compounds having an
expected application within medical treatments

 Serve a purpose (“task”), e.g. finding piperocaine-based anesthetic drugs, integrating a drug database
with a compound database, matching available resources to devised drug production plans, etc.

 Ontologies have a lifecycle

 Are created, evaluated, fixed, and exploited just like any artifact

 Their lifecycle has some original characteristics regarding:

 Data
 Project and workflow types
 Argumentation structures
 Design patterns

Ontology Specification

 Ontology (Requirements) Specification is a collection of requirements that the
ontology should fulfill, e.g. reasons to build the ontology, target group, intended uses,
possibly reached through a consensus process.

 Requirements are those needs that the ontology to be built should represent/cover.

 Competency Questions (CQs) are questions that the ontology to be built should be
able to answer.

 CQs are a way to represent requirements.

 CQs can be written in natural language (NL) and can be formalized in ontology
query languages (e.g. SPARQL).

Ontology Specification / example

 Story

 Decompose story in sentences

 Write instance-free sentences

 Transform into competency questions

 Sentence: Charlie Parker is the alto sax player on Lover Man, Dial, 1946

 Charlie Parker (person)

 the alto sax player (player role)

 on Lover Man (tune)

 Dial (publisher)

 1946 (recording year)

 CQs

 what persons do play a musical instrument?

 on what tune?

 for what publisher?

 in what recording year?

NeOn Methodology

Input: a set of ontological needs
●Objective: identifying the ontology
requirements
●Techniques: writing the requirements in Natural
Language in the form of competency
questions (CQs)
● Tools: mind map tools, excel, and collaborative
tools
● Output: a list of competency questions written in
Natural Language and a set of answers for the CQs

Resources for the Semantic Web

 Metadata

 Resources are marked-up with descriptions of their content. No good unless
everyone speaks the same language

 Terminologies

 provide shared and common vocabularies of a domain, so search engines,
agents, authors and users can communicate. No good unless everyone means
the same thing

 Ontologies

 provide a shared and common understanding of a domain that can be
communicated across people and applications, and will play a major role in
supporting information exchange and discovery

RDF Data Model

 Provides a simple data model based on triples

 Statements are <subject, predicate, object> triples:

 <Sean,hasColleague,Ian>

 Can be represented as a graph:

 Statements describe properties of resources

 A resource is any object that can be pointed to by a URI:

 The generic set of all names/addresses that are short strings that refer to
resources

 a document, a picture, a paragraph on the Web,
http://www.cs.man.ac.uk/index.html, a book in the library, a real person (?),
isbn://0141184280

 Properties themselves are also resources (URIs)

What does RDF give us?

 A mechanism for annotating data and resources.

 Single (simple) data model.

 Syntactic consistency between names (URIs).

 Low level integration of data.

Ontology Design Patterns (ODP)

OWL gives us logical language constructs, but does not give us any guidelines
on how to use them in order to solve our tasks. E.g. modeling something as a
class or an object property is mostly arbitrary

... OWL is not enough for building a good ontology and we cannot ask all web
users either to learn logic, or to study ontology design

Ontology Design Patterns (ODP)

Reusable solutions are described as “Ontology Design Patterns”, which help
reducing arbitrariness without asking for sophisticated skills ...

DEFINITION:

An Ontology Design Pattern is a reusable modeling solution to
solve a recurrent ontology design problem

OPs and patterns in other disciplines

 Our concept of “pattern” is associable with the wider “good/best
practice” of software engineering.

 It includes a wider range of solution types. For example:

 naming conventions in software engineering are considered good
practices, they are notdesign patterns.

 In ontology engineering “naming” is an important design activity (it
can have a strong impact on the usage of the ontology e.g., for
selection, mapping, etc.).

 We distinguish the different types of OPs by grouping them into six
families.

 Each family addresses different kinds of problems, and can be
represented with different levels of formality.

Types of Ontology Design Patterns (OPs)

 We also distinguish between ontological resources that are not OPs
and Ontology Design Anti-Patterns (AntiOPs)

Common misconceptions

 Disjointness of primitives

 Interpreting domain and range

 Closed and Open Worlds

Disjointness

 By default, primitive classes are not disjoint.

 Unless we explicitly say so, the description (Animal and Vegetable) is
not inconsistent.

 Similarly, with individuals -- the so-called Unique Name Assumption
(often present in DL languages) does not hold, and individuals are not
considered to be distinct unless explicitly asserted to be so.

Domain and Range

 OWL allows us to specify the domain and range of properties.

 Note that this is not interpreted as a constraint as you might expect.

 Rather, the domain and range assertions allow us to make inferences
about individuals.

 Consider the following:

 ObjectProperty(employs domain(Company) range(Person))
Individual(IBM value(employs Jim))

 If we havent said anything else about IBM or Jim, this is not an error.
However, we can now infer that IBM is a Company and Jim is a
Person.

Close and Open World assumptions

 The standard semantics of OWL makes an Open World Assumption
(OWA).

 We cannot assume that all information is known about all the
individuals in a domain.

 Negation as contradiction
 Anything might be true unless it can be proven false

 Closed World Assumption (CWA)

 Named individuals are the only individuals in the domain
 Negation as failure.

 If we cant deduce that x is an A, then we know it must be a (¬
A).

Example 1

 cat/dog/lion

Types of Ontology Design Patterns (OPs)

Presentation OPs

Definition

 Presentation OPs deal with usability and readability of ontologies from a
user perspective.

 They are meant as good practices that support the reuse of patterns by
facilitating their evaluation and selection.

 Two types:
 Naming Ops
 Annotation OPs

Naming OPs

Definition

 Naming OPs are conventions on how to create names for namespaces,
files, and ontology elements in general (classes, properties, etc.).

 Naming OPs are good practices that boost ontology readability and
understanding by humans, by supporting homogeneity in naming
procedures.

Examples of Naming OPs 1/2

 Namespace declared for ontologies.

 It is recommended to use the base URI of the organization that publishes
the ontology

 e.g. http://www.w3.org for the W3C, http://www.fao.org for the FAO,
http://www.ittig.cnr.it

 followed by a reference directory for the ontologies

 e.g. http://www.ittig.cnr.it/ontologies/

 It is also important to choose an approach for encoding versioning, either on
the name, or on the reference directory

http://www.ittig.cnr.it/ontologies/

Examples of Naming OPs 2/2

 Class names

 They should not contain plurals, unless explicitly required by the context

 Names like Areas is considered bad practice, if e.g. an instance of the class
Areas is a single area, not a collection of areas

 It is also recommended to use readable names instead of e.g. alphanumerical codes

 Non-readable name can be used (even if not recommended) if associated to
proper annotations (see Annotation OPs)

 It is useful to include the name of the parent class as a suffix of the class name

 e.g. MarineArea rdfs:subClassOf Area

 Class names conventionally start with a capital letter

 e.g. Area instead of area

Annotation OPs

 Annotation OPs provide annotation properties or annotation property
schemas that are meant to improve the understandability of
ontologies and their elements

 Annotation properties:

 http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

 annotation of OWL implementation of CPs

http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

Examples of Annotation OPs

 RDF Schema labels and comments (crucial for manual selection and
evaluation)

 Each class and property should be annotated with meaningful labels

 i.e., by means of the annotation property rdfs:label, with also translations
in differentlanguages.

 Each ontology and ontology element should be annotated with the rationale
they are based on

 i.e., by means of the annotation property rdfs:comment

Content OPs (CPs)

 CPs encode conceptual, rather than logical design patterns.

 Logical OPs solve design problems independently of a particular conceptualization

 CPs are patterns for solving design problems for the domain classes and properties that
populate an ontology, therefore they address content problems

 they are content-dependent

 Modeling problems solved by CPs have two components: domain and requirements.

 A same domain can have many requirements (e.g. different scenarios in a clinical
information context)

 A same requirement can be found in different domains (e.g. different domains with a same
“expert finding” scenario)

 CPs are strictly related to small use cases i.e., each of them is built out of a domain task

 A typical way of capturing requirements is by means of competency questions
 A competency question is a typical query that an expert might want to submit to a

knowledge base of its target domain, for a certain task.

Formal characteristics of OWL CPs

 (Small) ontology morphing

 Downward subsumption of at least one element

 Mostly graphs of classes and properties that are self-connected through axioms
(subClassOf, equivalentClass, domain, range, disjointFrom)

 Usually there is an underlying n-ary relation (sometimes polymorphic)

Characteristics of CPs

 Requirement-covering components

 They are defined in terms of the requirements (or cqs) they satisfy

 Small, autonomous components.

 A CP is a small, autonomous ontology and ensures a certain set of
inferences to be enabled on its corresponding knowledge base.

 Smallness and autonomy of CPs facilitate ontology designers:
composing CPs enables them to govern the complexity of the whole
ontology.

 CPs require a critical size, so that their diagrammatical visualizations are
aesthetically acceptable and easily memorizable.

 CP visualization must be intuitive and compact, and should catch
relevant, “core” notions of a domain.

Characteristics of CPs

 Reasoning-relevant components

 They allow some form of inference (minimal axiomatization, e.g. not an
isolated class)

 Linguistically relevant components.

 Many CPs nicely match linguistic patterns called frames.

 A frame can be described as a lexically founded ontology design pattern.

 Frames typically encode argument structures for verbs, e.g. the
frame Desiring associates elements (or “semantic roles”) such as
Experiencer, Event, FocalParticipant, LocationOfEvent, etc.

 Best practice components.

 A CP should be used to describe a “best practice” of modelling.

 Best practices are intended as local, thus derived from experts.

 The quality of CPs is currently based on the personal experience and
taste of the proposers, or on the provenance of the knowledge resource
where the pattern comes from.

Catalogue
 A catalogue of Cps

 http://www.ontologydesignpatterns.org (odp-web)

 catalogue entry

An example of CP: Agent Role

An example of CP: Agent Role Instantiation

An example of CP: Situation

An example of CP: Situation Instantiation

An example of CP: CollectionEntity

An example of CP: Time Interval

Example: ittig project

 In TopBraid

(Re)use situations:
matching CPs covering against local problems

Covering

 The covering property expresses the fact that a CP satisfies a set CQ of
competency questions (cq1,..., cqn).

cov(CP, CQ)
 A cqi can be transformed to a query qi to be submitted to a knowledge base.

 A CP covers CQ if it is as expressive as it is needed to store the necessary
knowledge for answering q1, . . . ,qn .

Representing local problems

 Local problems can be expressed in different ways:

 use cases, scenarios, user requirements, local competency questions (cqs), etc.

 All can be transformed to local “cqs”.

 Red Hot Chili Peppers recorded the Stadium Arcadium album during 2005

 When did Red Hot Chili Peppers record the Stadium Arcadium album?

 Which albums did Red Hot Chili Peppers record during 2005?



 Local “cqs” are not usually at the same level of generality as the cqs of Cps

 e.g., they may contain reference to instance element e.g. Stadium Arcadium

 we need to abstract them

 When did a certain band record a certain album?

 Which albums did a certain band record during a certain time period?

 ...

What we mean by matching cqs to CPs

 What do we mean by matching a cq to Cps?

 To compare the local cqs to the cqs covered by a CP in order to
evaluate the CP suitability for solving the local problems.

 Ongoing work on automatic support for CP selection starting from local
cqs

 parsing of requirements and extraction of cqs
 formalization of cqs
 NLP support to match cqs terminology to CP lexicalizations

 ontology matching

Summary of reuse situations and examples

 Precise or redundant matching

 Broader or narrower matching

 Partial matching

Import

 Import is the basic mechanism for ontology reuse.

 It is also the only one directly supported in the OWL vocabulary

 i.e., owl:import.
 Import is applicable to ontologies, hence also to Cps.

 If an ontology O2 imports an ontology O1, all the ontology elements and
OWL axioms from O1 are included in O2 .

 The imported ontology elements and axioms cannot be modified

 i.e., the ontology elements and axioms are read-only entities for O2.

 By importing a CP, an ontology ensures the set of inferences allowed by the
CP in its corresponding knowledge base.

Broader/narrower matching

 Broader matching:

 The cqs covered by a CP are more general than the local ones.

 The CP has firstly to be imported, then it has to be specialized in order
to cover the local scenarios.

 Narrower matching:

 The cqs covered by a CP are more specific than the local ones.

 The CP has firstly to be imported, then it has to be generalized in order
to cover the local scenarios.

 Two usage operations are identified:

 specialization

 generalization

Specialization

 A content pattern CP2 specializes CP1 if at least one ontology element of
CP2 is subsumed by an ontology element of CP1

 i.e., either by rdfs:subClassOf or rdfs:subPropertyOf

Broader matching example

 Consider the following scenario:

 a person plays a certain role.

 it can be expressed by the competency question included in the following
set:

 CQ1={who did play a certain role?}

 From the previous example we know that

 cov(agent role, Req)

 where CQ is more general than CQ1
 We can import agent role (prefix ar:) and define the class Person in the

following way:
 Person rdfs:subClassOf ar:Agent

Partial matching

 The CP does not cover all aspects of the local cqs

 The local use case has to be partitioned into smaller pieces.

 One of these pieces will be covered by the selected CP.

 For the other pieces, other CPs have to be selected.

 All selected CPs have to be imported and composed.

 One additional usage operation is identified:

 composition

Composition

 The composition operation relates two CPs and results into a new ontology

 The resulting ontology is composed of the union of the ontology elements
and axioms from the two CPs, plus the axioms (e.g. disjointness,
equivalence, etc.) that are added in order to link the CPs

 The composition of CP1 and CP2 consists of creating a semantic
association between CP1 and CP2 by adding at least one new axiom, which
involves ontology elements from both CP1 and CP2

 Typically, also new elements (“expansion”) are added when composing

Sample composition

Partial matching example

 For example, consider the following competency questions:

 cq1 : who did play a specific role in a certain period?

 cq2 : which role does a certain person have at a certain time?

 From previous examples we know that

 agent role covers partially cq1 and cq2, as it allows to represent agents
and the role they play

 time interval covers partially cq1 and cq2, as it allows to represent time
intervals

 The ontology resulting from the composition of these two CPs covers both
cq1 and cq2

Expansion

 Expansion consists of adding new ontology elements and axioms to a CP.

 The resulting ontology is composed of the ontology elements and axioms of
the CP, plus the added ontology elements and axioms.

Where do CPs come from?

 Content ontology design patterns (CPs) come from the experience of
ontology engineers in modeling foundational, core, or domain ontologies

 There are four ways of creating CPs, which can be summarized as follows:

 Reengineering from patterns expressed in other data models
 Data model patterns, Lexical Frames, Workflow patterns, Knowledge

discovery patterns, etc.

 Specialization/Generalization/Composition of other CPs

 Extraction from reference ontologies (by cloning)

 Creation by combining extraction, specialization, generalization,
composition, and expansion

Clone

 The extraction process relies on the clone operation

 The clone operation consists of duplicating an ontology element, which is
used as a prototype.

Types of clone operation

 Shallow clone

 consists of creating a new ontology element oe2 by duplicating an
existing ontology element oe1 . OWL restrictions of and axioms defined
for oe1 and oe2 will be exactly the same

 Deep clone:

 consists of creating a new ontology element oe2 by duplicating an
existing ontology element oe1 , and by deep-cloning a new ontology
element for each one that is referred in oe1 's axiomatization, recursively

 Partial clone:

 consists of deep-cloning an ontology element, but by keeping only a
subset of its axioms, and of partial-cloning the kept elements, recursively

 Some ontology design tools support the shallow clone operation

 e.g., TopBraid Composer

 Deep clone and partial clone are not yet supported by any existing tool.

The extraction process

CP definition (finally!)

Definition
 CPs are distinguished networked ontologies and have their own namespace

 They cover a specific set CQ of competency questions (requirements),
which represent the problem they provide a solution for

 A CP emerges from existing conceptual models and can be extracted from
a reference ontology (based on the clone operation), can be reengineered
from other conceptual models (e.g. data models), can be created by
composition of other CPs, by expansion of a CP, and either by
specialization or generalization of another CP

Pattern-based ontology design method:

 Main principles

 divide & conquer

 understand the task and express it by means of competency
questions

 re-use “good” solutions i.e., ontology design patterns
 evaluate the result against the task

 Transform cq in SPARQL queries

Sample iteration
 Sentence: Charlie Parker is the alto sax player on Lover Man, Dial, 1946

 Charlie Parker (person)
 the alto sax player (player role)

 on Lover Man (tune)

 Dial (publisher)

 1946 (recording year)

 CQs
 what persons do play a musical instrument?
 on what tune?

 for what publisher?

 in what recording year?

 Queries
 SELECT ?x ?y WHERE { ?x ?r ?y . ?x a :Person . ?y a :PlayerRole }
 SELECT ?x ?z WHERE { ?x ?r ?y . ?x a :Person . ?x ?s ?z . ?z a :Tune }

 SELECT ?z ?w WHERE { ?z ?t ?w . ?z a :Tune . ?w a :Publisher }

 SELECT ?z ?k WHERE { ?z :recordingYear ?k . ?z a :Tune . ?k a xsd:gYear }

cont.d
 Retrieve/Match cqs to CPs, or possibly propose new ones

 agentrole.owl, timeindexedpersonrole.owl, timeinterval.owl, ...

 Specialize/Compose/Expand CPs to local cq terminology

 person-playerrole, playing-instrument-on-a-tune, playing-on-a-tune-in-recordingyear

 Populate Abox

 Person(CharlieParker), PlayerRole(AltoSaxPlayer), Tune(LoverMan),
Session(LoverManWithParkerOnDial), ..

 Run unit test/Iterate until fixed

SELECT ?x ?y ?z ?w ?k

WHERE {

?x ?r ?y .

?x a :Person .

?y a :PlayerRole .

 ?x ?s ?z .

 ?z a :Tune .

 ?z ?t ?w .

 ?w a :Publisher .

 ?z :recordingYear ?k .

 ?k a xsd:gYear }

 RESULTS: ?x=CharlieParker ?y=AltoSaxPlayer ?z=LoverMan ?w=Dial ?k=1946

iteration with Content OPs

 Requirements are divided into small stories

 Get your story (local problem)

 divide & conquer

 read carefully the story and divide them into simple sentences s1,..,sn

 FOR EACH SENTENCE si

 transform si to an instance-free sentence (“abstraction”)

 an instance can be either an individual or a property value (fact)

 transform the instance-free sentence to local competency questions (cqs)

 translate local cqs to queries to be submitted to the knowledge base, and collect them in a unit test [12]

 match the CP coverage to the local cqs

 identify the CPs you need, and associate each CP with the local cqs it covers

 if any local competency question remains uncovered, define separate small ontologies that cover them,
and import them into the ontology. Treat these as CPs

 identify ontology elements to be specialized, and specialize them

 identify axioms and ontology elements to involve in the composition of chosen CPs, and compose them

 expand the ontology in order to cover uncovered competency question

 populate the ontology ABox with the instances from the story

 test using the collected queries and fix until all tests succeed

 END FOR

Ontology evaluation

 Domain: entity types, expertise patterns

 is the ontology appropriate to context?
 Task: competency questions

 is the ontology appropriate to support relevant queries?
 Resources: tools and personnel

 is the ontology (structure, function, annotations) manageable and
costeffective?

 Direct measuring of graphs and annotations

 Black-box/glass-box measuring of admissibility wrt conceptualization

 Indirect measuring via user feedback, and correlation

 Principles, diagnosis and trade-offs

Bibliography / Links

 Valentina Presutti and Aldo Gangemi. Content Ontology Design Patterns as Practical Building Blocks for
Web Ontologies. In Proceedings of the 27th International Conference on Conceptual Modeling (ER 2008)

 Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, Jos Lehmann. Modelling Ontology Evaluation and
Validation. Y. Sure (ed.), Proceedings of the Third European Semantic Web Conference, Springer, 2006.

 http://ontologydesignpatterns.org/index.php/Training:NeOn_2008_Tutorial_on_Computational_Ontologies

 http://www.neon-project.org/

 http://www.topquadrant.com/topbraid/composer/index.html

http://ontologydesignpatterns.org/index.php/Training:NeOn_2008_Tutorial_on_Computational_Ontologies
http://www.neon-project.org/
http://www.topquadrant.com/topbraid/composer/index.html

