Contributo
per una sociologia dell’informatica

Corrado Maria Daclon

1. PREMESSA

L’utilizzo dell’informatica in settori a cui, fino a pochi anni fa, nessuno si sarebbe rivolto, è un fatto ormai acquisito e che appare persino superfluo ribadire. Tuttavia, la portata del fenomeno è così vasta da determinare un profondo articolarsi di situazioni e comportamenti, il cui carattere sociale è innegabilmente preponderante. Da qui, considerata la solida interdipendenza creatasi tra informatica e strutture «concrete» in cui si organizza la società, non sembra azzardato prospettare a breve termine la nascita, di fatto, della «sociologia dell’informatica».

Definizioni e campi d’azione non sono sempre chiari e precisi, ma fornirne ancora contribuirebbe solo ad arricchire il già grande numero di «suggerimenti» e «determinazioni». La soluzione migliore sarebbe istituire materialmente quella disciplina che già occupa, in modo virtuale, frammentario e quindi non coordinato, tanto spazio nella vita di ogni giorno. Il presente studio, recando dati e varie indicazioni, vuol essere un auspicio in tal senso.

2. APPLICAZIONI DELL’INFORMATICA

2.1. Inquadramento generale

Oggi ci troviamo di fronte alla nascita di facoltà di senso nei robot, che possono distinguere visivamente superfici e tonalità; contestualmente vengono sviluppate le già notevoli capacità di apprendimento e memorizzazione, per
far sì che i compiti da svolgere possano via via essere sempre più articolati e precisi. In conclusione, non vi è definizione più esatta e verificata, per tale fenomeno, che quella tanto citata di «nuova rivoluzione industriale»¹.

Una rivoluzione che fa sentire i suoi effetti anche negli ambiti solitamente non collegati, in maniera diretta, all’industria. Il problema è infatti assai più ampio; il contesto in cui si sviluppa tale capovolgimento non è unicamente produttivo, ma sociale in genere. Come alcuni autorevoli esperti hanno individuato, esistono tre principali fasi nell’evoluzione dell’informatica: la prima è quella dei cervelli elettronici riservati, anche a causa del costo elevato e della complessità degli impianti, ai massimi enti pubblici e privati; la seconda è quella in cui le nuove tecnologie entrano in tutti gli uffici e le industrie; la terza, infine, è quella in cui l’informatica diventerà di uso comune e quotidiano, soprattutto sul piano domestico.

Se si dovesse classificare la società di oggi in base a tali situazioni, dovremmo dire che nessuna delle tre raffigura con la massima esattezza le circostanze attuali; tuttavia, senz’altro, la terza trova molti più punti in comune che la seconda, visto il massiccio uso di personal e l’enorme lancio che sta conseguendo il Videotel.

Nel nostro Paese il numero di personal computer è nell’ordine delle decine di migliaia; si stima che dei «55.000 personal computer esistenti attualmente in Italia, il 6-7 per cento circa sia impiegato come strumento di educazione. E che, soltanto nella scuola media inferiore, e nei licei, i personal computer “in dotazione” abbiano già superato le 200 unità»².

La didattica computerizzata è difatti un ulteriore aspetto dell’informatica; e la sua evoluzione è molto rapida: si parla, per gli Stati Uniti, di circa 500 mila computer didattici nel 1985.

Praticamente tutte le Regioni italiane sono dotate di sistemi informatici per il supporto di attività amministrative, e la quasi totalità dei Comuni con oltre 100 mila abitanti fa uso di elaboratori elettronici, sovente di propria dotazione³.

In ogni caso, si fa notare⁴, «in questo campo le potenzialità di innovazione – di tipo culturale, oltreché di tipo elaborativo, organizzativo e gestionale – non sembrano ancora sufficientemente esplorate, né tantomeno sperimenti.

tate con adeguata consapevolezza». Ci troviamo di fronte, in definitiva, a questioni da affrontare con la più grande attenzione, evitando rapide conclusioni, magari dettate da impulsi emotivi come purtroppo a volte accade.

I contenuti del problema debbono essere analizzati con molta cura, studiando dati reali in maniera particolareggiata; non superficialmente, perché in tal modo un discorso di questa portata, anziché contribuire a focalizzare il quadro della situazione e le prospettive, le strategie future, può sortire gli effetti contrari e peggiorare, quindi, delle visioni già per loro stessa natura abbastanza nebulose.

2.2. Il settore privato

Nel settore privato il computer è nato, nel senso che qui prima che altrove si sono utilizzati i calcolatori per gli impieghi che tutti conosciamo. E sempre nel privato il computer trova lo spazio maggiore, come ci dicono i dati: la spesa per terminali, ecc. ha registrato nel 1979-80 un incremento del 17,3% nel campo «finanza e assicurazioni», del 18,4% nell'industria, del 22,6% nel commercio e servizi, del 9,7% nella pubblica amministrazione centrale, del 17,0% nella pubblica amministrazione locale. Interessante è notare come «la domanda di informatica è, in pratica, ancora decisamente influenzata e dominata dalle caratteristiche dell'offerta; ovvero il sistema socio-economico non ha acquisito sufficiente consapevolezza delle potenzialità e degli impieghi possibili per ottimizzarli con i propri bisogni».

Si registra poi un certo ritardo dell'Italia riguardo il software: nel 1979, ad esempio, in Francia si sono spesi 729 milioni di dollari per software destinato a servizi di elaborazione dati, contro i 370 del nostro Paese. Più recente è il problema del software applicativo, ma anche su questo ci troviamo in posizione di ritardo rispetto a Paesi come la Francia, la Germania, la Gran Bretagna.

All'interno di questo quadro globale, è possibile distinguere quei tipi di azienda che più di altri vedono l'elaboratore come supporto, o addirittura perno, della rispettiva attività: anzitutto troviamo il credito, il turismo e le comunicazioni, i trasporti, le catene distributive e ancora la chimica, la meccanica e la moda.

La tendenza al terziario, o meglio ai servizi del terziario avanzato, è ancor più esplicita nei dati. Si prevede che a breve termine negli Stati Uniti 45 impieghi su 100 saranno automatizzati, ma solo il 15% di questi riguarderà le fabbriche: l'85%, e forse anche di più, saranno attività da compiersi negli uffici. Contrariamente al luogo comune secondo cui l'informatica, e l'auto-

7. Iv, p. 70.
mazione in genere, alleviano in prevalenza i compiti più gravosi, pericolosi e tediosi degli operai, l’inserimento dell’elaboratore nel settore privato stimola il noto processo di terziarizzazione. Naturalmente il movimento della società che porta al terziario non ha origine esclusiva nel privato, ma delle articolazioni, della rilevanza e delle origini del terziario nel nostro Paese ci occuperemo in seguito.

A detta di studiosi del problema, il fenomeno si può paragonare, con le dovute precauzioni, alla svolta subita dall’agricoltura, in cui la manodopera è passata dal 90% del 1870 al 4% circa di oggi.

Ma rilevo ancora maggiore avrà un’introduzione dell’informatica nel settore pubblico: dai collegamenti con il tipo di occupazione («colletti blu» o «colletti bianchi»), alle altre conseguenze che esamineremo oltre.

2.3. Il settore pubblico

Senza dubbio è emblematico il caso dell’automazione degli uffici giudiziari della Corte di Cassazione. Si tratta del caso più frequentemente citato di informatica nel settore pubblico. In numerosi Paesi europei si è giunti, negli ultimi anni, all’applicazione dell’informatica nel campo del diritto; tale aspetto comprende i problemi dell’automazione volta ad un servizio giurisdizionale più rapido, coerente, efficiente. A. Postiglione* sottolinea che «rientrano in tale tipo di informatica l’automazione dei lavori di routine (registrazioni, annotazioni, contabilizzazioni, estratti, certificazioni, comunicazioni, ecc.); l’accoppiamento automatico di processi concorrenti questioni uguali o affini; la formazione automatica dei ruoli delle cause nei vari uffici giudiziari; l’eventuale assegnazione automatica dei processi ai magistrati, ecc.».

Per quello che invece gli Enti locali, risalta il numero di Regioni, come del resto si è menzionato in precedenza, dotate di un Centro informatico «contabile amministrativo/statistico» (tutte ad eccezione della Campania e della Sicilia) e, in aggiunta, di un sistema complesso utile all’attività di programmazione e collegamento con reti esterne (4 Regioni settentrionali, 3 centrali, 2 del meridione). L’attività ovviamente più informatizzata è l’organizzazione del personale dipendente, seguita dalla contabilità. Nella maggioranza dei casi sono stati costituiti appositi uffici per l’uso del calcolatore, altrimenti si procede appoggiandosi a strutture consortili o aziende pubbliche*9. Le finalità di snellimento delle operazioni appaiono meglio nelle rilevazioni che interessano i Comuni: l’informatica si trova molto facilmente in campi come quello contabile, amministrativo o anagrafico rispetto, ad esempio, a quello urbanistico, economico o di programmazione; gli addetti, tuttavia, rappresentano in media il 2,4% degli addetti comunali10. Negli Enti locali, pertan-

10. ivi, pp. 732-734.

162
to, è in atto un mutamento di tecniche organizzative e gestionali intimamente legato alla diffusione degli elaboratori.

Il discorso è assai ampio. Vi è chi ha teorizzato un centro unico nazionale, che raccolga le informazioni attualmente dislocate presso le varie amministrazioni\(^{11}\): è, in fondo, su scala maggiore, il concetto di banca dati esposto nei passi che seguono. Limitiamoci, per il momento, ad affermare che le tecnologie informatiche riescono a dare impulsi di vitale efficienza anche a strutture, quelle pubbliche, notoriamente lontane da tali obiettivi.

Sotto il profilo dell’istruzione, è necessario distinguerne tra scuole che adottano i calcolatori per insegnare discipline collegate all’informatica e scuole che impiegano il computer per una didattica che non riguarda assolutamente l’informatica. Tra le prime, la «situazione si presenta più frastagliata e diseguale, a seconda dei diversi indirizzi di corso. Poco o nulla si è fatto negli istituti artistici; analogo discorso vale per i classici e gli scientifici. Le cose migliorano, invece, nel campo dell’istruzione tecnica dove, su circa 1.300 istituti, 102 hanno un indirizzo di studio specifico per “ragionieri programmatore” e 65 per “periti in informatica”»; è da notare, però, come la ripartizione sul territorio nazionale non sia affatto omogenea. Ad esempio, percentualisticamente parlando, il tasso più alto lo troviamo nelle Regioni del Nord (Liguria 17,64% mentre le cifre si abbassano notevolmente a mano a mano che si scende nel meridione (Sicilia 5,88%)»\(^{12}\).

Per le seconde si rinvia oltre, circa l’aspetto psicologico-didattico. Diciamo, limitatamente ai dati, qualche osservazione; ad esempio che in America gran parte del 100 mila calcolatori usati negli istituti scolastici si trovano nei quartieri cosiddetti alti, ma «in una riserva di indiani Chippewa, nel Wisconsin, i giovani della tribù usano calcolatori elettronici per imparare il dimenticato linguaggio dei padri»\(^{13}\).

Per concludere, è significativa l’azione concreta di alcuni gruppi per supplire alla carenza di competenza tecnica e cultura tecnologica dei docenti che si trovano, quasi sopraffatti, ad utilizzare il computer. De Michele scrive\(^{14}\): «da più parti si stanno moltiplicando programmazioni di Corsi per gli insegnanti. Lo ha fatto in particolare il CIDI (Centro d’Iniziativa Democratica degli Insegnanti) che già quest’anno, coinvolgendo oltre tre mila docenti di ogni ordine, grado e disciplina, ha avviato un centinaio di Corsi di alfabetizzazione informatica a livello zero... per essere in grado di padroneggiare queste sofisticate macchine».

L’Amministrazione Pubblica è in pieno processo di informatizzazione. «Alla
fine del 1981, il parco hardware pubblico constava di 131 centri (con uno o più sistemi di elaborazione), di 204 elaboratori general purpose, di 5.070 minielaboratori, di 11.281 terminali. La spesa corrente per l’informatica nello stesso anno era stata di 330 miliardi; quella per ulteriori investimenti (acquisto attrezzature) di 50 miliardi. Molti però si chiedono se le prospettive siano davvero ottimistiche.

2.4. La telematica

L’applicazione delle nuove tecnologie non poteva non riguardare quel settore che, da sempre, si è valso delle più moderne tecniche elettroniche e meccaniche disponibili: le telecomunicazioni. L’incontro con l’informatica ha infatti dato luogo alla telematica, che opera grazie alla possibilità di codificare informazioni provenienti dagli svariati terminali-utenti in segnali numerici organizzati, e viceversa.

Per meglio comprendere la portata di tale fenomeno innovativo, analizziamo separatamente i diversi tipi di utenza configurabili.

Circa le utenze professionali, possiamo dire che esse si identificano con grandi organismi (industrie, ospedali, alberghi, ecc.); per essi è concreto l’obiettivo di centralizzare tutti i servizi di comunicazione come la trasmissione di testi e dati, le comunicazioni telex e telefoniche, ecc. Si creerebbero, in sostanza, dei centralini polivalenti per la gestione, lo smistamento e il trattamento di qualsiasi informazione in uscita o in entrata.

Per le utenze domestiche, i servizi forniti dal telefono e dal televisore potranno essere fortemente incrementati, tramite dispositivi aggiuntivi che rendano accessibili le banche dati comuni che già oggi si stanno realizzando. D’altro lato il Videotel della SIP è una dimostrazione di quanto avanzato sia lo stato delle comunicazioni in Italia e nel mondo; del Videotel, tuttavia, si tratterà più avanti.

Infine, il rapporto tra telematica e territorio; quanto più stretto sarà tale rapporto, più si vedranno risolti problemi collegati a intere aree, del tipo di lasciapassare elettronico, localizzazione e chiamata delle persone anche su superfici notevolmente estese, consultazione di libri e documenti tramite «teletexa», posta elettronica, carte di credito elettroniche, segnalazione e rilevazione dei livelli d’inquinamento, la medicina preventiva a domicilio, la consulenza specifica e l’ insegnamento nella propria abitazione, l’acquisto e il pagamento automatizzati per tutti i prodotti, le prenotazioni di spettacoli, alberghi, viaggi, la democrazia a partecipazione elettronica tramite «televoto», e si potrebbe continuare a lungo.

Come alcuni esperti hanno individuato, il software dei sistemi telematici li

164
rende estremamente veloci per la struttura operante «in tempo reale», adattabili per la lunga vita operativa che consente modifiche e aggiunte sugli impianti, «componibili» per l'architettura modulare di cui sono dotati, affidabili in special modo per quanto attiene alle ridonanze e alla correttezza.

Nel novembre del 1982 è stato introdotto in Italia il Videotel. Rangoni Machiavelli spiega 18 che «esso si basa sul principio di utilizzare lo schermo del televisore, che praticamente ogni famiglia possiede, come terminal telefonico per accedere, tramite telefono o filodiffusione, ad una banca dati. L'idea fu sperimentata all'inizio del 1970 in Nord America e ripresa qualche anno dopo in Inghilterra dalle Poste britanniche che misero a punto e lanciarono commercialmente la prima generazione del videotex».

«Il Videotex è un metodo di accesso standardizzato (di tipo interattivo e di facile uso da parte di chiunque) ad una quantità illimitata di informazioni... Le tecnologie delle telecomunicazioni e dell'elaborazione elettronica sono... alla base anche del sistema Videotex italiano: con il Videotel l'utente può 'ascoltare', ossia leggere i dati trasmessi sotto forma di testo scritto sullo schermo del televisore domestico (oppure di apposito terminale), e 'parlare', cioè inviare le proprie richieste al sistema per mezzo di una tastiera simile al normale telecomando» 19. Tra i fornitori di informazioni trovarono poi numerose banche, assicurazioni, Enti pubblici e privati, quotidiani, ditte per l'acquisto tramite catalogo, università.

In sintesi, a questo punto, «si tratta di valutare... come avverrà il passaggio da tradizionali strumenti informativi a nuovi strumenti che incorporino in modo esplicito la dimensione elettronico-informatica; e se tale passaggio comporterà un aumento dei flussi informativi che investono mediamente le famiglie italiane ed una crescita di cultura a riguardo, di capacità cioè di selezionare, finalizzare, elaborare l'informazione» 20. È un aspetto che affronteremo in seguito.

3. GLI EFFETTI NELLA SOCIETÀ

3.1. Funzionalità ed efficienza

Le quattro generazioni di elaboratori che si sono succedute fino ad oggi, dai calcolatori a valvole, ingombranti e scarsamente potenti, ai sistemi di elaborazione che sfruttano piastrine di silicio grandi, si fa per dire, pochissimi millimetri, hanno incredibilmente aumentato, come abbiamo visto, le possibilità di impiego dei calcolatori elettronici. La velocità di elaborazione si mi-

sura ormai nell’ordine dei nanosecondi, il volume si è ridotto, limitatamente all’unità centrale di elaborazione, di circa 100 milioni di volte in neppure quarant’anni, il costo diviene sempre minore e la capacità di memoria permette di conservare le informazioni di un’enciclopedia su di uno spazio incredibilmente limitato. E si parla già della prossima generazione, la quinta, in cui i computer saranno capaci di interpretare, comprendere e dedurre in maniera peculiarmente umana; gli studi sui «computer biologici» formati da connessioni tra piastrine metalliche e tessuti biologici, non sono più classificabili come fantascienza.

L’importanza quindi sia tecnica, sia economica dell’informatica appare fuor di dubbio. La «velocità operativa» e la «flessibilità», che L. Visco Gilardi 21 definisce rispettivamente la capacità «di prendere in considerazione enormi quantità di ‘dati’ e di trarne dei ‘risultati’ in tempi brevi» e «l’adattabilità dello “strumento-elaboratore” alla soluzione dei più disparati problemi», hanno fatto sì che il computer si presti ai bisogni informativi, vale a dire di gestione e organizzazione delle informazioni, di tutti i settori di attività.

«Flessibilità, velocità operativa, prezzo accessibile, rapporto costi/benefici conveniente, semplicità costruttiva, universalità d’uso, diffusione crescente delle informazioni e del bisogno di informazioni fanno dell’informatica un fattore fondamentale di sviluppo sociale e – nel contempo – uno strumento indispensabile e non più eliminabile per la gestione delle organizzazioni produttive e dei servizi» 22.

In un primo tempo la tendenza diffusa era quella di vedere un’informatica orientata ad alleviare compiti particolarmente gravosi e tediosi, a sollevare, soprattutto i settori amministrativi, da operazioni sistematiche e ripetitive. In definitiva, si trattava di un’estensione di quello che avevano significato le prime calcolatrici tascabili: un guadagno di tempo e un risparmio di energie nei riguardi di compiti che richiedono più pazienza che abilità. Il nuovo e più interessante tipo di automazione informatica consiste invece nello studio e nella successiva applicazione di metodologie di collegamento e «amplificazione» delle potenzialità. Mentre in precedenza ci si limitava ad intervenire sulle attività operative, lasciando immutate le strategie di gestione ed organizzazione, ora si è scoperto che collegando i diversi sistemi di comunicazione interno/esterno con le «banche dati», cioè con tutte le informazioni di cui si dispone, si può guardare alle banche dati come punto di partenza/arrivo dei «flussi informativi», i quali si ramificano in tutte le direzioni ma fanno sempre capo ad un qualcosa di unitario. «L’informatica diventa, di conseguenza, una “tecnologia di organizzazione”, in cui le nozioni ed i contenuti tecnici e metodologici trascendono le pure e semplici conoscenze d’utilizzo degli elaboratori elettronici per allargarsi ai concetti propri della scienza dell’organizzazione» 23. Ecco perciò che, come da «informazio-

22. _Ivi_, p. 12.
23. _Ivi_, p. 17.
ne» e «automatica» nacque a suo tempo «informatica», da «informatica» e «organizzazione» vede la luce un neologismo già molto diffuso: «informatizzazione».

3.2. Il processo di terziarizzazione

«È ormai cosa ovvia affermare che il settore terziario sta assumendo enorme e crescente importanza nella realtà del processo di evoluzione della nostra società. Basta infatti riandare a pochi dati (il settore occupa la metà della popolazione attiva, concorre a determinare un terzo degli investimenti fissi lordi, determinerà nei prossimi anni i 3/4 dei nuovi posti di lavoro, ecc.)... per capire il senso e la portata che il settore ha nella nostra società».

Così il CENSIS 24 riferiva nel 1974, in occasione del Rapporto annuale, sui processi di terziarizzazione.

Ma «il terziario ha conosciuto in questi anni un notevole processo di articolazione e di specializzazione dei vari comparti; c’è stato inoltre lo sviluppo di nuove attività soprattutto nell’ambito del cosiddetto terziario avanzato in conseguenza di fenomeni di esternalizzazione del settore industriale» 27.

Da queste considerazioni generali traspare, chiarissimo, un dato di fondo: lo sviluparsi di tecnologie e occupazioni legate all’informatica, alla telematica, e c. hanno inequivocabilmente inciso in grande misura sulla crescita del terziario, a scapito di altre attività. Il settore naturalmente va dal credito ai servizi alle imprese, dal commercio alle comunicazioni, e via dicendo; quindi l’informatica non inciderebbe direttamente per numero di addetti specifici, contribuirebbe piuttosto a potenziare e rendere floridi settori che di essa si servono. Come è noto, il commercio ha automatizzato gran parte dell’aspetto «magazzini» e c., i trasporti impiegano per le prenotazioni e la direzione dei movimenti grandi sistemi di elaborazione, il credito organizza la clientela ed i servizi tramite computer, la ricerca ha da sempre privilegiato l’ausilio del calcolatore, la Pubblica Amministrazione, la sanità, l’istruzione, ecc. stanno ora operando in tal senso. Sono, tutti questi, i comparti più significativi del terziario, che l’informatica, anche se talora in modo per nulla esplicito, sta contribuendo ad accrescere.

È nata quindi l’idea che certi tipi di lavori, che consistono nel lavorare con una tastiera sul terminale, possono essere fatti dovunque, e perciò anche da casa... Vi sono degli esperimenti in atto... uno è negli Stati Uniti da parte di una grande industria... l’altro è delle poste inglesi, le quali hanno progettato di lasciare lavorare a casa 5.000 impiegati entro l’85» [28]. La questione è però se l’uomo saprà e vorrà adattarsi ad un sistema di vita privo di incontri quotidiani, di spostamenti, relegato all’interno del proprio domicilio senza un contatto, un interlocutore che non sia un terminale. Come si dovrà interpretare un futuro di questo tipo? Davvero è un obiettivo a cui si deve mirare?

3.3. Il discorso occupazionale

Come ha acutamente notato Vacca [29], non è pensabile una dicotomia di tipo: o ricorrere all’automazione su vasta scala, riducendo i costi e creando una moltitudine di disoccupati, o frenare l’automazione già esistente, conservando però i posti di lavoro. Le scelte possibili sono in realtà numerose, e il problema si inquadra meglio nell’ambito di una «riconversione» piuttosto che di una «sostituzione» della manodopera.

«I termini del problema vanno considerati tutti insieme: iniziative nel campo dell’istruzione e della riqualificazione professionale; pianificazione e riprogettazione dei grandi sistemi tecnologici (energia, telecomunicazioni, aspetto urbanistico, ecc.); pianificazione economica; innovazioni organizzative, politiche e sociali» [30].

In ogni caso, è incontestabile che la situazione sul piano dell’occupazione risenta dei cambiamenti verificatisi nella struttura economico-sociale. Valga per tutti il fatto che «nell’arco di un ventennio l’occupazione nel settore agricolo è diminuita costantemente, trovando solo parziale compensazione nella crescita degli altri settori (in particolare il terziario). La percentuale degli occupati sul totale della popolazione registra pertanto una diminuzione» [31].

Al di là della questione vista su scala nazionale, possiamo sintetizzare affermando che la soppressione di posti di lavoro, tradizionalmente intesi, non vuol dire per forza soppressione di impieghi; è, come sopra detto, un problema di «qualità» del lavoro. Pertanto si dovrà «preparare la società alla rivoluzione informatica e robotica perché eviti le prevedibili turbolenze iniziali e ne ottenga, invece, vantaggi enormi» [32].

La disquisizione va vista anche, come indica Meschieri [33], tenendo conto che

32. R. Vacca, op. cit.
peraltro esistono più forme di lavoratori, dall’operaio-tecnico al dirigente-imprenditore, per ognuno dei quali i problemi sono diversi.

Per concludere, la componente «uomo» può sempre giocare il ruolo decisivo. Si è mai pensato, tra l’altro, alle conseguenze che genererebbero «gli scioperi selvaggi in centri informatici bancari o di selezione postale»34. D’altronde «l’informatizzazione suscita già delle forme di rigetto: gli scioperi informatici ed il rifiuto dei consumatori statunitensi di utilizzare la moneta elettronica non sono che alcuni esempi»35.

3.4. Dal coinvolgimento al controllo?

Uno dei quesiti più spinosi è se le nuove tecnologie sopprimano la libertà individuale o costituiscono l’avanzamento per una «democrazia informatizzata». La risposta, nonostante il problema sia stato centrato da molto tempo, è complessa. Una trattazione degli aspetti particolari del rapporto informatica-società-Stato richiederebbe un’analisi a sé, entrando magari nel campo delle decisioni politiche e legislative36. Un ambito soggettivo in cui bisogna muoversi con attenzione.

Possiamo sostenere, comunque, che l’informatica pone diverse basi concrete su cui impostare un positivo studio volto a stimolare la partecipazione dei cittadini, anche in termini di controllo da operarsi a cura dei cittadini stessi. In altre parole, la possibilità di accedere molto agevolmente ad alcuni tipi di informazioni coinvolgerebbe i cittadini, migliorandone il rapporto con lo Stato. Inoltre, servizi capillari a basso costo funzionerebbero da incentivo per una maggiore conoscenza e partecipazione alla «cosa pubblica». L’informativa sociale, o meglio una società informatizzata, si identifica oggi con l’opportunità offerta al cittadino di partecipare, senza mediazioni, alla gestione degli interessi comuni. Il discorso precedentemente sviluppato di flussi informativi che fanno capo ad un corpo centrale unitario, in sostanza, trova concreta applicazione anche in un aspetto che fino a pochi anni fa pareva totalmente chiuso a riguardo.

Tra i rischi meglio focalizzati vi è quello di «bombardare di informazioni una massa di uomini e di programmarne lo sviluppo senza che essi siano culturalmente preparati a “difendersi criticamente” dalla società dell’informatica e a gestirne le infinite potenzialità»37. Il potere di gestire le informazioni può divenire un tramite, volto alla centralizzazione dell’autorità nelle mani di pochi. Autorevoli esperti sono dell’opinione che siamo ad un bivio vero e proprio tra una società oligarchica e una società partecipativa.

35. Ivi, p. 29.
36. C.M. Daclon, Verso la «democrazia elettronica»?, «La Discussione», XXXII, n. 27, p. 2.
4. Una trasformazione culturale

4.1. La scuola

Secondo alcuni, i computer e i videogiochi sono strumenti per pensare e crescere che non hanno paragoni con quelli del passato; a detta di altri soffocano la creatività del bambino.

Insomma, esiste o no la funzione di «protesi dell'intelligenza» da parte di quella macchina che Marshall McLuhan, una ventina di anni fa, avrebbe accomunato alle «estensioni dei sensi», come lui definiva gli strumenti di comunicazione?

Sicuramente il computer può aiutare in maniera notevole lo studente, a patto che la metodologia di approccio sia corretta. Ad esempio, una delle considerazioni più frequenti è di scartare un uso pedissequo del Computer Assisted Instruction, che si basa su dischi nei quali si trovano le informazioni già memorizzate, che darebbero luogo ad un apprendimento poco creativo e tendenzialmente meccanico. Per contro, «nella scuola ci sono degli obiettivi precisi: educare l’individuo, aiutarlo a crescere culturalmente anche nella sfera emotiva e fantastica. Il dialogo con la macchina non può, quindi, prescindere dal dialogo con gli altri. Il rapporto corretto è quello di avere da un lato l’insegnamento e dall’altro lo strumento meccanico che offra stimolo ad eventuali discussioni»38.

Nella struttura scolastica le possibilità, peraltro, sono davvero tante: il computer come istruttore, che tiene lezioni individuali interattive e segue le esercitazioni; il computer come laboratorio, che analizza i dati, risolve i problemi, mette in pratica complesse simulazioni; il computer come «calcolatore», per i tradizionali calcoli matematici; il computer come oggetto di apprendimento, nel senso dell’abc del calcolatore o computer literacy, dell’elaborazione dei dati, della programmazione; il computer come strumento per l’istruzione, che conserva e aggiorna i registri degli alunni e predispone il materiale didattico39.

Per concludere, non si tratta di disquisire sulle opportunità di una scuola per l’informatica, vale a dire una scuola che formi degli esperti nella scienza dell’informazione; questo problema riguarderebbe solo il piccolo numero di istituti con tale indirizzo di studi. Il grosso nodo è la scuola informatizzata, anzi da informatizzare. In Austria si prevede, entro un periodo di due anni, di informatizzare quasi la metà delle scuole; in Francia, nel 1988, si dovrebbero avere nelle scuole secondarie 100 mila computer; nella Repubblica Federale Tedesca vi è l’obbligo della disciplina informatica in 10 Lander; la

Svezia si propone di riconvertire tutti i docenti entro l’86; nel Regno Unito si può contare sui microcomputer nel 96% delle scuole; anche il Giappone, pur partendo da oggettivi impedimenti dovuti all’alfabeto, ha informatizzato quasi tutte le scuole medie superiori, disponendo una grandissima quantità di microcomputer per tale scopo40. L’Italia, in ossequio a quella che ormai per la scuola è una tradizione, è in ritardo di molti anni.

4.2. L’editoria elettronica

Il grande ruolo che riveste l’editoria nella società di oggi, probabilmente sarà soggetto a sensibili ridimensionamenti. Il quarto potere, dopo quelli legislativo, esecutivo e giudiziario, è infatti per accezione comune la stampa; proprio per la capacità di orientamento dell’opinione pubblica e l’influenza che può avere sulla volontà e le azioni dei fruitori, la stampa è stata assunta al ruolo di «potere».

Ma tra le infinite strade che lo sviluppo della tecnologia informatica apre, vi è la cosiddetta editoria elettronica. Come abbiamo detto, in seguito a uno sfruttamento del computer per le utenze di affari e il mercato professionale, vedremo, o stiamo già vedendo, l’impiego di terminali nel proprio domicilio. È paradigmatico il caso che tra i fornitori di informazioni tramite Videotel, vi siano già quotidiani come «La Stampa», «Il Secolo XIX», «Il Messaggero».

«Mentre in una prima fase si è pensato che il calcolatore poteva essere impiegato come un ausilio che interviene in una o più fasi inserite nel processo di stampa, si è successivamente ritenuto che l’elaboratore associato ai mezzi di telecomunicazione e a opportuni terminali (ad es. anche un televisore) può rivoluzionare tutto il sistema oggi impiegato per la raccolta e la diffusione delle notizie»41. La tecnologia attuale è già virtualmente in condizioni di permettere di abolire la carta stampata come mezzo di trasmissione delle informazioni, anche se chiaramente l’opinione pubblica, sia psicologicamente che materialmente, non è affatto pronta.

Tuttavia l’ipotesi si sta profilando in modo sempre più concreto, visti i vantaggi come la diffusione istantanea e contemporanea a tutti gli utenti, la possibilità di aggiornamento in qualsiasi momento senza essere costretti a sbarcare nuovamente il periodico (o il libro, nel caso esemplificativo di un Annuario ISTAT, ecc.), l’accesso molto più agevole e, non ultima, una riduzione dei costi di realizzazione. Si parla poi di fornire i terminali di apposite stampanti, per avere sì la softcopy, ossia la visualizzazione, ma se necessaria anche la hardcopy, una copia su carta di quanto appare sul video.

Se ciò renderà tangibile una riduzione dei costi e un migliore servizio

171
all'utente, forse potrà incoraggiare la lettura di riviste e giornali; un aspetto in cui l'Italia, l'Europa in genere, è troppo carente.

5. IL PROBLEMA DEL LINGUAGGIO

5.1. Linguaggio naturale e linguaggio artificiale

«L'uomo è il solo essere capace di un linguaggio vero che gli permette di comunicare il suo pensiero ai propri simili. Ma se il linguaggio è nelle sue stesse origini un mezzo di comunicazione particolarmente necessario nella specie sociale per il lavoro in comune, occorre ben guardarsi dal separarlo dal pensiero... Nell'uomo, il linguaggio è sia esteriore, il che ci permette di comunicare, sia interiore il che ci garantisce il pensiero e la nostra coscienza umana riflessa. L'animale pensa, ma il suo pensiero è diverso dal nostro... poiché il suo psichismo non è né verbalizzato né verbalizzabile. L'uomo privato del linguaggio o il cui linguaggio sia rudimentale... è anche limitato sul piano soggettivo del suo stesso pensiero»\(^\text{42}\). In sostanza, l'uomo non si può definire sapiens se non per il fatto che è loquens.

La diversità di vedute sul problema dell'apprendimento del linguaggio, fornisce però differenti interpretazioni. Per esempio, Chomsky\(^\text{43}\) sostiene che il sistema grammaticale e semantico, rappresentato nel cervello del parlante, si trova espresso in potenza in ciascun individuo; una sorta, quindi, di gene della lingua.

F. de Saussure distingue con precisione lingua e linguaggio, e dà, dei termini, puntuali definizioni: per lingua si intende «al tempo stesso un prodotto sociale della facoltà del linguaggio ed un insieme di convenzioni necessarie, adottate dal corpo sociale per consentire l'esercizio di questa facoltà negli individui»\(^\text{44}\). la lingua pertanto è anche una «convenzione»: «non il linguaggio parlato è naturale per l'uomo, ma la facoltà di costituire una lingua, vale a dire un sistema di segni distinti corrispondenti a delle idee distinte»\(^\text{45}\). In sintesi, la lingua è «un sistema grammaticale esistente virtualmente in ciascun cervello, più esattamente, nel cervello d'un insieme di individui, dato che la lingua non è completa in nessun singolo individuo, ma esiste perfettamente soltanto nella massa»\(^\text{46}\). Qualcosa di diverso da quanto sostiene Chomsky.

È utile infine, come contributo alla chiarezza e alla comprensione, vedere le spiegazioni che de Saussure fornisce su «segno», «significato» e «significante». Il segno linguistico è «un'entità psichica a due facce... Questi due ele-

\(^{43}\) N. Chomsky, L'analisi formale del linguaggio, Torino, Boringhieri, 1969, p. 147.
\(^{45}\) lvi, p. 20.
\(^{46}\) lvi, p. 23.
menti sono intimamente uniti e si richiamano l'un l'altro... Noi chiamiamo 'segno' la combinazione del concetto e dell'immagine acustica... L'ambiguità sparirebbe se si designassero... "concetto" e "immagine acustica" rispettivamente con "significato" e "significante" »

47. Logicamente, «il legame che unisce il significante al significato è arbitrario»

Molto diverso è il discorso nel campo dei linguaggi artificiali, ad esempio i linguaggi di programmazione. «Il sistema di elaborazione opera logicamente riconoscendo le istruzioni di un programma; originariamente la "programmazione" avveniva in "linguaggio macchina" o "linguaggio base", con una struttura delle istruzioni molto vicina alla configurazione binaria registrata nella memoria centrale che determina una corrispondenza biunivoca fra una istruzione ed una funzione circuituale. Successivamente furono creati i "linguaggi simbolici" che, utilizzando una serie di riferimenti mnemonici o "codici", consentivano di "codificare" programmi... L'evoluzione successiva vide l'affermarsi dei "linguaggi algoritmici"... che fanno corrispondere ad una loro "istruzione" una serie di istruzioni-macchina»

49. I linguaggi «ad alto livello» assumono, di giorno in giorno, una rilevanza maggiore. Anzitutto perché un linguaggio ad alto livello è spesso 10 volte più espressivo di un linguaggio simbolico come l'assembler, e quindi una frase di un linguaggio ad alto livello richiederebbe 10 istruzioni in assembler per dar luogo agli stessi risultati; per questa caratteristica un linguaggio ad alto livello si impara in un tempo relativamente breve, e i programmi si realizzano in modo più lineare e comprensibile; gli errori sono ovviamente più facili da rintracciare e da eliminare; infine, i linguaggi ad alto livello non risentono della differenza di caratteristiche hardware tra un computer e un altro; rendono pertanto utilizzabili su macchine diverse gli stessi programmi.

50. Per comprendere il problema e collegarlo a quello dei linguaggi naturali, vediamo che Donovan definisce un «sistema formale» come un «sistema logico» che «consiste di un alfabeto, di un insieme di parole chiamate assiomi e di un insieme finito di relazioni chiamate regole di inferenza»

51. I sistemi formali vengono impiegati per dare la «forma», cioè la sintassi, ai linguaggi di programmazione.

Interessante è la spiegazione che Donovan52 dà circa il linguaggio: «un linguaggio può essere pensato come una serie di frasi... con una struttura ben definita e generalmente un significato... Se tutti i linguaggi avessero un numero finito di formule o frasi "legali", cioè valide, le definizioni sintattiche non presenterebbero problemi, sarebbe sufficiente numerare tutte le frasi legali... Nella realtà, il problema della definizione è molto più complicato, per-
ché la maggior parte dei linguaggi di qualche utilità contiene un numero illimitato (o comunque molto grande) di frasi valide».

Il punto discriminante tra linguaggio naturale e linguaggio artificiale è proprio questo: mentre nel primo la «positività» è legata all’articolazione, che quanto più è meglio più permette di esprimere pensieri elaborati (la cosiddetta «ricchezza» di vocabolario), nel secondo il pregio consiste nel raccogliere il maggior numero di significati nel minor numero di significanti. Tale affermazione non può avere valore assoluto; esistono casi nel linguaggio umano in cui la sintesi è essenziale, e casi nel linguaggio di programmazione in cui la scarsa informazione origina errori.

È bene affrontare l’argomento nei dettagli, e per questo si rinvia ai passi che seguono.

5.2. Interazioni tra linguaggi

Riprendendo il problema, richiamiamo ad esempio le scarse possibilità di articolazione del discorso (in caso di temi scientifici, ecc.) offerte da alcuni dialetti della lingua italiana. Certo, la semplicità può risultare positiva sotto taluni aspetti, ma a volte può addirittura causare problemi di espressione. «L’informazione contenuta in una frase detta A viene effettivamente compresa da B solo perché esiste una massa di altra informazione che A e B già posseggono in comune»53; solo in tal caso un’espressione non esplicita o non completa può venire intesa. Ma a volte il patrimonio di informazione non trova riscontro da ambedue le parti: bisogna comunicarlo.

Secondo i risultati dei test di quoziente d’intelligenza negli Stati Uniti, appare una tendenza a sviluppare le capacità logico-figurali anziché quelle logico-verbali. I test, condotti tra i giovani che sono cresciuti in mezzo ai computer e ai videogiochi, hanno sortito dei punteggi più bassi del normale. La fase della maturazione, in un bambino, è molto delicata soprattutto riguardo il linguaggio: «il bambino, diventato sordo prima dei sei o sette anni, dimentica il linguaggio di cui non aveva ancora la padronanza»54; infatti, «con le basi ricevute nel lungo periodo dell’infanzia, l’uomo adulto diventa capace di grandissimo progresso di cui non sarebbe suscettibile il primitivo o il diseducato che non hanno imparato a servirsi culturalmente del loro cervello»55.

È difficile dire se davvero i computer, i videogiochi e così via possano modificare determinate strutture mentali nelle nuove generazioni. Ed è ancora più difficile dire se tali modificazioni, qualora avvengano, siano necessariamente da considerarsi negative.

Come è noto, nel pieno della civiltà ellenistica si parlava in tutto il bacino

54. P. Chauvichard, op. cit., p. 36.
55. Ibid., p. 37.

174
Mediterraneo la Koinè, la lingua comune adottata dai Greci che, travalician-
di vari dialetti, risolveva il problema della comunicabilità. Oggi degli
esperti paragonano i linguaggi dei computer alla Koinè, sostenendo che ita-
liani, americani, coreani, ecc. possono comprendere solo questo linguaggio
comune. In tutta franchezza il paragone ci appare assai forzato; il linguag-
ggio dei calcolatori, proprio per esigenze ineludibili e oggettive, è il più sem-
plice possibile, anche perché al computer, che non pensa (almeno per ora),
una quantità immensa di strutture verbali come quelle per descrivere pensie-
ri ipotetici, ecc., sarebbero davvero superflue.

G. Barbiellini Amidei riassume bene il concetto: «la comunicabilità non è
soltanto come credono molti giornalisti un problema di parlare chiaro, ma...
un'esigenza di parlare chiaro senza perdere nessuno dei contenuti che devono
essere comunicati... perché un parlare chiaro parlando in modo degradato non
è un parlare chiaro, è il più oscuro dei discorsi».

Sappiamo per esperienza che più vasto ed eterogeneo è il pubblico a cui bisogna parlare,
poi si è co-
stretti ad «alleggerire» il discorso sia in termini concettuali che lessicali.

Infatti, la teoria della «temperatura informazionale» asserisce che la «tem-
peratura» è tanto più «alta» in un testo, quanto più grande è il numero di
termini differenti in esso presenti; in sintesi, un libro in cui, ad esempio, un
termine ricorre migliaia di volte, avrà una temperatura informazionale
senz'altro bassa. Il linguaggio dei computer, sebbene ne esistano moltissimi,
ha sostanzialmente un numero assai limitato di vocaboli, con tutte le conse-
guenze che si possono dedurre.

Un ulteriore motivo di diatribe è la modifica che può avvenire nel lessi-
co. La lingua oggi attraversa per così dire «orizzontalmente» moltissime di-
scipline: ognuna prende o dà qualcosa; esistono termini prestati dal linguag-
ggio medico, da quello giuridico, da quello giornalistico, ecc. Ma esistono an-
che autentiche «forme» prelevate dai linguaggi tecnici e specifici.

L’informatica ha già cominciato a «cedere» vocaboli alla lingua di ogni gior-
no. Si è espressa però sovente la preoccupazione che il linguaggio degli ela-
boratori elettronici possa sottrarre strutture fino a «impoverire» la lingua.
Al di là dello sviluppo dell’informatica, negli ultimi anni ad esempio si è an-
dati verso una progressiva sostituzione del congiuntivo con l’indicativo: in-
vece di affermare «credevo che quella cosa fosse...», ci esprimiamo con
«credevo che quella cosa era...»; non considerando che indichiamo come av-
venuta in passato un’azione che è stata solo un’ipotesi. C’è chi sostiene che
è una strada percorsa da altre lingue neolatine e non vuol obbligatoriamente

57. G. Barbiellini Amidei in Atti del 2° Convegno nazionale «Il linguaggio delle divulgazione»,
Selezione dal Reader’s Digest, Milano, 1983, p. 113.
58. T. De Mauro, In verbis, 1983; per il recente sviluppo di questa teoria, non si possono for-
nire indicazioni bibliografiche precise: si veda però C. Tagliavini, Applicazione dei calcolatori
elettronici all’analisi e alla statistica linguistica, in op. cit., Accademia Nazionale dei Lincei, pp.
111-118, e in generale i testi di statistica linguistica che si riferiscono all’analisi della lingua.
dire impoverimento concettuale; si tratta però di una generalizzazione dei modi del verbo che può portare a equivoci di grandi dimensioni.

Abbiamo premesso che il fenomeno di «declino» del congiuntivo non ha, per ora, relazioni scientificamente provate con l’informatica. Ma quest’ultima, ad esempio, non è certo un ostacolo, una barriera a tale diffusa tendenza. Il linguaggio dei calcolatori, in qualsiasi forma, non ha bisogno del congiuntivo, non essendo possibile nella Central Processing Unit, l’Unità Centrale di Elaborazione, alcun pensiero ipotetico. E comunque de Saussure ha chiamato a fondo quanti siano gli elementi che concorrono a mutare la lingua, e con quanta facilità agiscano.

Orwell identificò, tra le tante forme di coercizione e condizionamento da parte del Grande Fratello, quella della creazione di una «relingua» di pochi termini, che limitasse la potenzialità intellettuale: «ogni anno ci saranno meno parole, e la possibilità di pensare delle proposizioni sarà sempre più ridotta».

Il linguaggio come valore imprescindibile della natura umana deve essere fatto oggetto di maggiore tutela. Perdere dei «gradi di libertà» di cui la nostra lingua è dotata, sarebbe gravissimo. Correremmo il rischio che in futuro non si riesca più a leggere un Dialogo di Platone, e si fatichi a parlare di fantasia.

6. CONCLUSIONI

Quello che si può ricavare da questa analisi, che coglie peraltro solo degli aspetti di un problema che è tutto da definire, è che, con certezza, il fulcro di tutte le decisioni passate e future è l’uomo.

Le tecnologie sono pienamente controllabili solo quando il loro sviluppo non è giunto a completa maturazione. D’altro canto, in una fase iniziale è difficoltoso stabilire delle modalità d’intervento su un fenomeno ancora socialmente sfocato. Il noto studio svolto in Gran Bretagna all’inizio del secolo sui veicoli a motore, per citare un esempio concreto, si preoccupava della polvere che i mezzi avrebbero creato nelle strade, trascurando il dramma dell’inquinamento ben più grave causato dal piombo del combustibile.

Come è possibile, perciò, intervenire in un ambito come quello dell’informatica, in cui non si riescono a tratteggiare neppure gli sviluppi più immediati? Si deve allora lasciare un margine che permetta di tornare sempre indietro, in qualsiasi momento. Errori e decisioni scorrette possono avvenire, l’enziale è poterle correggere. In fondo, tutti i processi controllati automaticamente ed elettronicamente si basano sul feedback, la cosiddetta retroazione.

All’uomo quindi, in funzione del suo dominio, spetta operare le scelte decisive, allontanando ad un tempo idolatriche infatuazioni e condanne alla cieca, dettate entrambe più dall’incompetenza che da un razionale realismo.