Studi e ricerche

Some Remarks on the History
of Computing in Germany”

Konrad Zuse

Studying the history of computing, we can realize that there is a history
of the philosophy of this history, too. From my own subjective point of
view I can say that today I watch the computer development in another
way than 10 or 20 years ago. Elaborating my lecture I finally realized
that there are different philosophies behind the different developments,
especially in comparison with my own.

First I should like to mention that in Germany the development of cal-
culating machines began in 1623,

Contrary to the general opinion that Pascal and Leibniz were the first
in this field, recent historical research has shown that the German
Schickard was their forerunner by some thirty years. We have to thank
Professor v. Freytag-Léringhoff who revealed the nearly forgotten work
of Schickard in Tiibingen and who reconstructed his machine.

We are able to welcome him here on this conference. This evening he
will give us some details about the work of Schickard.

In this lecture I want to concentsate mainly on the computer development
in Germany connected with my own work.

I have to thank Mr. Bauer that he gave ycu already on Friday a report
on this matter. So I want to speak more about the principal viewpoints
and the philosophy behind it.

Pr. Dr. Ing. Konrad Zuse. — 1936-45: developing and constructing of first computer
Z3 (1941). — 1949-1966: building up the company Zuse K. G. — 1956: Hon. Professor
at Gottingen University. — Since 1966: Research. — Publications: Der Computer
mein Lebenswerk, Rechnender Raum, efc.

* Lecture at the I[nternational Research Conference on the History of Computing,
University of California, Los Alamos, 10-15, 1976,)

Nevertheless, I have to apologize for some repetitions.

Today we know that the development of the program controlled computer
already began during the last century with Babbage. But he was so far
ahead of his time that his machine was nearly completely forgotten. So
in Germany, when 1 started in 1934, nearly nobody knew him and his
computer development.

I was a student in civil engineering in Berlin. Berlin is a nice town and
there were man opportunities for a student to spend his time in an
agreable manner, for instance with the nice girls of Berlin.

But instead of that, we had to perform big and awful calculations.

Also later on as an engineer in the aircraft industry I became aware of the
tremendous number of monotonous calculations necessary for the design
of static and aerodynamic structures. Therefore, I decided to design and
construct calculating machines suited to solve these problems automatically.
This work proceeded almost parallel to, but quite independently of the
developments in the United States by Stibitz, Aiken, Eckert, Mauchly,
and cthers. It is interesting that during the pioneer days the computer
development was represented by engineers and scientists who were not
specialists in the field of calculating machines. At that time nobedy knew
the difference between hardware and software. We concentrated ourselves
on purely technclogical matters as well as on logic design and pro-
gramming.

So I was unprejudiced and free to try new concepts.

In order to illustrate the opinion of the manufacturers of calculating
machines at that time, I would like to mention a telephone conversation
which I had in 1937 with cne of those manufacturers. He told me that
it was, indeed, wonderful that I as a ycung man had dedicated some time
and efforts to the development of new ideas, and that he wished me all
" the best for possible other inventions, but stated that in the techniques
of calculating machines all feasible scluticns were already exhausted.
Therefore, it would be absolutely hopeless to come up with any new
ideas. In addition, he asked me whether my machine was based on the
« sequential addition principle » or on the « cne times one table ».

To this I replied that for my machine this was of no importance whatsoever
Here you should know that at that time the specialists of calculating
machines were divided in two schools of thought, each applying either
principle. According to the opinion prevailing at that time, only a lunatic
cculd make a statement that this difference was irrelevant for his design.
Nevertheless, the manufacturer mentioned came to my workshop and I was
finally able to convince him that in a machine operating on the binary
principle, this was, indeed, irrelevant.

2

Now some diagrams may show you the most relevant features of this
development.

Light 1. First you see a time scale with the most important periods. In
1934, as a student. I started to form my first ideas and designs cn paper.
In 1936, I began with the hardware and constructed some models Z1, Z2,
and Z3. Z1 and Z2 were only test models. They already had all the
features of the later computer but did not work satisfactorily.

In 1939, due to the perfectly private state of my workshop and due to
the lack of official sponsering 1 got a scldier with the beginning of
the war.

The manufacturer, who assisted me, wrote a letter to my Major requesting
a leave to be able to complete my work on an important invention. He
wrote that I was working on a machine useful for the calculations and
designs in the aircraft industry.

My Major looked at this letter and said, « I don’t understand that. The
German aircraft is the best of the world. T don’t see what to calculate
further on ».

Half a year later, T was freed from military service; but not for the
development of computers but as an engineer in the aircraft industry.

The Z3 was completed in 1941 and was the first fully operating model.

The year 1945, with the end of worldwar II, cut off the hardware de-
velopment in Germany. We were able to save cnly the model Z4, which
we transported from Berlin in an adventurous Odyssey to Bavaria, where
it was hidden in a small village ‘in the Alpes.

Because of the unfavourable post-war conditions the hardware develop-
ment was interrupted for some years and could not be continued before
1948.

In the ccurse of this hardware develcpment several technolegies were
tested and used.

At that time calculating machines normally were small units to be put
on a desk. So I was psychologically prejudiced and started with mechanical
constructions.

But I made a step from the traditional decimal calculating machines to
real binary switching elements. This was, I think, the only attempt to
make a mechanical machine based on a two-positicnal principle. But this
technology did not work well with the exception of the storage unit and
I decided to change to the electromechanical technology with its well
proven relays.

Two additional lines of the hardware development may be mentioned. A
model for process control and the electronic calculating devices of Schreyer.
I will discuss both later on.

In the lower part of the diagram you see the parallel development of
theory and software.

Right from the beginning I tried to base the whole development on a
new and solid theoretical foundation. At first, the analogies between
switching circuits and the calculus of propositions were discovered and a
switching algebra was set up. General considerations concerning the
relations between calculating and thinking followed. I realized that there
is no boarder-line between these two aspects and by 1938 it was already
_ perfectly clear to me that the development would progress in the direction
of the artificial brain.

At that time I knew scarcely anything about the working method of the
human brain. Even today we do not know exactly how it works. But I
did not see the problem from the technological point of view, but more
by analyzing the information process connected with « thinking ».

I took these ideas very sericusly and this may have influenced my whole
philosophy of the further development. At that time there was practically
nobody to discuss with me the consequences of the possible innovations
following this line.

Even 10 years later when — after the war — I became acquainted with
the pioneer work on the other side of the Atlantic I sometimes had the
impression that they were playing with computers like children play with
matches without overlocking the whaole scope of the new field. But these
ideas were elaborated on paper only.

The interruption of the hardware development in 1945 allowed me to
concentrate all my attention on theoretical considerations, and to develop
a universal algorithmic language, which I called « Plankalkuel ». The back-
ground and the situation of that time were the reason for the special

philosophy behind it.

Later on, this led to some differences and perhaps to some misunder-
standings with my colleagues, for instance Bauer and Rutishauser.

But I was enjoyed to hear from the lecture of Bauer, that they studied
seriously the Plankalkuel.

Light 2 gives a table of the models built in Germany during the time from
1935 to 1945. There is the main-line, beginning with the models Z1 to
Z4. These were universal computers for numerical calculations. They all
operated in the binary system and with the exception of Z2, with floating
point arithmetic. The program was read from punched tape. I used an

4

cight-channel input code and one address instruction code. S1 and S2
were special models for process control.

Schreyer built some test mcdels in electronic technology.

The logical computr L1 was a test model in relay technology for programs
with bits as operands. :

Light 3 shows the way from the propositional calculus to the switching-
algebra. I used an abstract representation for switching diagrams, which
could be transferred into an arbitrary hardware. We applied it to me-
chanical elements with metal sheets and slots, connected by pins, to
electromagnetic relays and to electronic circuits. The idea to use pneumatic
and hydraulic switching elements was only pursued on paper.

Unfortunately, I never published my ideas concerning this matter. Later
on I learned that there were some papers, two in German language by
Hansi Piesch and Eder, and cne in English language by Shannon. But I
missed there the consequent confrontation with the calculus of propo-
sitions. For us the terms « And », « Or », « Not » belonged to our daily
language. We really worked with them and made the step to apply the
mathematical logic to the computer design. I translated the logical rules
systematically into switching algebra. For instance, the principle of duality
gave new insights in the working of switching diagrams.

For propositional formulas it means: change all « and » into « or » and
inverse and negate all elementary propositions to get the negated pro-
position. The analogue rule for contact-circuits reads: change all serial
connections into parallel and inverse and change all « on » contacts into
« off » contacts and inverse to get the switching diagram representing the
inverse of the given circuit.

As a result of this practice the logic represented by the hardware was
very sophisticated, using contrived micro-programming depending on
complicated conditions, conditional branching, and so on.

So, switching algebra was consequently applied in all the computers we
constructed. When Schreyer changed to the electronic technology he, first,
had only to design the switching elements corresponding to the three
propositional operations: conjunction, disjunction, and negation. After
that he was able to translate one to one the already proven dlagrams
for the electromechanical machines.

Light 4 shows some general aspects of the computer-architecture as we

call it today.

The machine of Babbage already had the combination of the Arithmetic
Unit and the Storage. Both were directly controlled by a set of punched
cards, providing a special place for a hole for each storage-cell.

The machines Z1 to Z4 correspond to this concept, but, contrary to
Babbage, they used coded addresses and a Selecting Unit.

Both, the computer of Babbage and my machines, had no conditional
crders and feedback in the Program Unit.

The first computers in Germany were exclusively designed for numerical
calculations and the limited financial basis and short time available for the
construction did not allow any special features. Besides that, the users
of the computer did not see the necessity for a more sophisticated logical
design in these days.

But on paper there was no limit for further ideas, even during the war.

The idea of general calculating or information processing, as we say
today, induced me to consider that the program, too, is information and
can be processed by itself or by another program. This general concept
was elaborated in all consequences in the Plankalkuel.

In hardware it means that we not only have a controlling line going from
left to right, but also from right to left. I had the feeling that this
line could influence the whole computer development in a very efficient
but also very dangeours way. Setting up this connection could mean
making a contract with the devil. Therefore, T hesitated to do so, being
unable to overlook all the consequences, the good as well as the bad.

So first I concentrated on theory. This led tc the Plankalkuel. It is
interesting to follow the further development. My colleagues on the
cther side had no scruples about the problem I just mentioned. John v.
Neumann and cthers constructed a machine with a storage for all kinds
of information including the program.

This idea may have been trivial, as soon as the programs were binary
coded and there existed storage units for storing any binary coded
information. This requirement was already fulfilled by the machines
Z1 to Z4 and others. Besides this, the idea of stcring the program was
already mentioned for instance in one of my patent applications in 1936.
Other pioneers may have had the same idea rather early. I think it was
the special organisation of the machine of John v. Neumann which opened
the door for universal calculating. He gave the signal «all clear » for
the scientists but for the devil, too. This concept was adapted to the
situation arourd 1945 and was very efficient, especially for numerical
calculations.

My own designs for future machines on paper were more structured with
instructions stored independently and special units for the handling
of addresses and subroutines nested in several levels.

I believe that other pioneers, too, have been in a similar situation. The
theoretical work on paper, published or not, mostly is going far beyond
the machines really constructed.

6

Now let’s return to the situation in Germany during the war. In our
situation the only realistic way to process a program by itself was to
build a separate computer for this purpose. Thus, the construction of the
computers for numerical calculations could be continued without drastic
modifications. We called this rype of machine « Planfertigungsgerit », that
means a special computer to make the program for a numerical sequence
controlled computer. This device was intended to do about the same
sophisticated compilers do today. But in 1945 we had to stop this
interesting development.

I intended to proceed in the following steps:

1) Converting algebraic formulars written in traditional form into a
sequence of orders for the computer.

2) Inserting subroutines in a mainprogram in several levels including the
changing cf corresponding addresses.)

3) Development of programs for determinants, matrices etc. of different
order and arrangement of non-zero-elements. This means mainly the
processing of addresses.

4) Analysing whole technical systems like frame works for constructional
engineering and others and setting up the program for the numerical
calculations for such a system with varying parameters like measures,
forces and so on.

This led, to rather complicated and sophisticated evaluations, using the
calculus of relations, predicates etc.

After this general review I want to discuss some details.

Light 5 shows the block diagram of the models Z1 to Z4.

We have a punch, operated by hand to make the program-tape. The
program unit is tape controlled and gives orders to the Computing unit
and the addresses for the Selecting unit of the storage. Input and output-
units are directly connected to the arithmetic unit.

Light 6 shows the details of the input and output of the model Z3. On
the lower part you have the arrangement of the keys. There are the
keys for 4 decimal digits and the sign +, —. Relative to the decimal
digits the point can be set by pressing one of 20 keys. So the number
is represented in the same way as you write it, i. e. without separate data
for the exponent.

On the right side you have the keys for the operations. Besides the normal
4 arithmetic operations we have some special cperations, like square-root
and others.

In the ocutput on the upper side the numbers are represented by lamps
arranged corresponding to the input-keys.

Light 7 shows some details of the floating point arithmeric and the
storage of the model Z3.

The sign, the exponent and the mantissa are handled in separate units.

On Light 8 we have a survey of the programs, which were run cn the
computer Z3. :

Apart from some general mathematical programs, there was a program for
the calculation cf a determinant with complex elements and with variables
p, q, r which was of special interest for the engineers in the field of
aerodynamics. (Calculations of vibrations, Flatterrechnung).

Light 9. 1T mentioned earlier the special purpose computers S1 and S2.
In an aircraft factory guided missiles were being manufactured on an
assembly line. These missiles had to fly very precisely in order to be
remotely controllable. Therefore, every missile had to pass a special
measuring staticn, where the deviaticns from the aerodynamic symetry
were measured at about 100 points with measuring clocks. These data
were the input for a computer, programmed by rotary switches, which
calculated the necessary corrections of the positions of the wings. A
sequence of some hundred additions, multiplications etc. was executed
automatically. This computer was in operation around the clack for two
years during the war,

Light 10. In a second version the measuring devices were read automa-
tically via rotary switches, which transferred their positions into the
computer. Today we speak of analog to digital conversion and process
control.

Light 11. Now let’s take a lock at the work of Schrever. I already
mentioned that the switching algebra allowed us to design a computer
in abstract diagrams, which could be. transferred into a special hardware-
technology, for instance electromechanical relay circuits.

Following this idea, Schreyer first designed and constructed the circuits
corresponding to the operations of the propositional calculus. Today it
is commonplace to speak of Nor- and And-circuits etc. But please re-
member that the first electronic calculator, the ENIAC, built some years
later, worked by simulating decimal gears. Schreyer could not use the
semi-conductor-technology at that time (1937), as we do today.

He used a special type of tube with two parallel grids with the same
characteristic.

It was interesting for me to learn from the lecture of Randell, that in
the « Collossus » similar ideas were applied. There were used circuits
corresponding to the propositional operations, too.

8

Light 12 shows a ccmputing device built by Schreyer during the war.
It is a ten digit parallel binary calculator specialized on transferring a
3-digit decimal number into a ten digit binary number. The model was
ready for tests in 1944,

During the war we submitted the concept of an electronic computer with
2,000 tubes to the German Government Research Authorities, but their
reaction was negative. We would never have attempted to construct a
computer with 18,000 tubes and I admire the heroism shown by. Mr.
Eckert and Mauchly.

Most of the machines we constructed in Geitmany until 1945 were
destroyed by airraids. Only the model Z4 could be saved. In 1950,
after some improvements, it was leased to the Eidgendssische Technische
Hochschule in Ziirich, Switzerland. It was so reliable that it was customary
to let it work through the night unattendedly. I remember the good
cooperation with Stiefel, Speiser, and Rutishauser.

Not before 1950 could we continue the development cf computers after
an interruption of some years. Together with two friends [started the
ZUst KG near Bad Hersfeld, Hessen. A series of new models followed,
but I think this is less interesting for this conference.

At first, the Optical Industry were our customers, then the Authorities
for Land-Surveying and the Univeisities. Besides cf the last there was
no sponsering on assistance by the government.

Perhaps I may mention the development of an automatic plotter with high
accuracy about 1958. Today the name of Zust KG is cancelled and my
former factor is cwned by Siemens AG.

Independant of this development and without any knowledge of each
other Dr. Dirks during worldwar IT constructed a computing device for
commercial purposes using a rotating magnetic storage. This was a fore-
runner of the later developed magnetic drums and discs.

Cencerning these two developments it would be interesting to study the
priorities in the feld of rotating magnetic storage-devices, especially in
comparisen with paralell constructions at other places. About 1947 another
German pioneer, Dr. Billing, constructed a magnetic drum for the use in
a computer. '

Professor Bauer already gave us further information on the other
interesting developments after 1950 in Germany.

Now I will give you some details on the algorithmic language, called
Plankalkuel. I told vou already that with the end of the war we had
to stop our hardware-development and so I concentrated on theoretical
investigations. Of course, I only can give you a general survey in this
short lecture. Those who are more interested in this matter may study

9

the new edition of the Plankalkuel which has recently been published in
English.

The first principle of the Plankalkuel is

Data processing begins with the bit.

I am sorry but even today I have difficulties with some of my colleagues
to justify this assertion. Since about 20 to 30 years most of the computers
only slowly and gradually they overcame the priority of the numerical
calculations. Thus, in our conventional computers the bit is only tolerated
as a boolean object for controlling conditional branching and so on.

Contrary to this aspect, the Plankalkuel is fundamentally based on the
bit.

Light 13 shows how arbitrary structures may be defined by composing
bits, strings of bits and so on.

From mathematical logic I took the instruments of the calculus of pro-
positions, of relations and the predicate-calculus.

Light 14 shows two examples for the application of relations to practical
engineering. The structure of a frame and the measurement of a girder
both are represented by lists of pairs which may be objects for structural
calculations.

Light 15 shows how such pairlists can be split into components (lower
figure).

Above you see the special kind of representation of the objects. All data
attached to an object are put together, but in separate Jines. The first
line says only « Variable » or something like that.

The second line contains the indices, completing the name of the object.
The third line gives the identification of the component, you wish to
select from the given object. This selection can be done in several levels,
so that any part of the whole data structure up to the last bit may be
handled separately. The last line contains the information about the
structure of the selected object or component respectively.

For this purpose we have a systematic code for every structure, for
instance So for the bit, and so on.

In other languages this information is given separately beforehand in a

declaration.
&

Light 16 shows the main syntactic features of the Plankalkuel.

10

Every program is a module in itself. There is a « Randauszug », meaning
an « Input-Output-Specification » which gives the relations of the program-
mcdule to the environment. -

Subroutines are defined in the following way:

Every result of an arbitrary program can be used as a function of some
variables. So this language gives the exact logical content of the program
but not additional information concerning the details of the implementation
like
: « Call by value »

« Call by reference » and so on.

The objects of a program may be input-values (variables) local values,
results, constants and some auxiliary values for controlling iterative pro-
cesses or bounded variables for the operators of the predicate calculus.

We then have socme special symbols for statements, conditional orders
and iterative cvcles.

There is also an End-symbol, FIN, which corresponds in a limited sense
to the Go To of other languages. But according to the modular organisation
of the Plankalkuel there is no danger of applying it in a confusing
manner.

It was interesting for me to test the efficiency and the general scope
of the Plankalkuel by applying it to Chessproblems.

I learned plaving Chess especially for programming Chess problems.
This field seemed to me suited for the formulation of rather sophisticated
data structures, nested conditions, and general calculations.

Light 17 shows some special types of data structures defined for this
purpose.

Please let us take a look, for instance, at the « field occupation ». For the
description we need a list of 64 specifications of the type of occupation
of any point and so on.

On the following pages I only will give you a general impression of
what programs written in this language look like.

The program is called PA160 and evaluates whether the White King
is in checkmate or stalemate. '

The Input is a « field occupation » and the output are two bits, one for
each of the wanted predicates. Then follows a kind of comment, which
is not a part of the proper program.

Lights 18a and 185 show some preliminary comments on the meaning of
the used objects.

11

Light 19 shows the proper program. You see there some operators of
the predicate calculus like « this one », or « those which », and some
conditional orders. :

Locking at the arrangement of the formulas you have the impression of
a two-dimensicnal language. But this is not really so. This form facilitates
the reading of the program for the user. For implementation it can be
stretched into a linear representation without changing the structure of
the program.

Behind the Plankalkuel there is a special philosophy basing on my early
cenviction, that there is a steady way from simple numerical calculations
to high-level thinking processes. In order to test the universality of this
language I applied it for several extraordinary fields. Thus, for instance,
I made some steps in the direction of symbolic calculations, general
programs for relations, or graphs, as we call it today, chess playing and
so on.

Here you will miss the normal numerical calculations like linear equations
etc. Some general considerations showed me that these are rather trivial
in comparison to the other fields selected by me for the further investiga-
tions. This later on led to some misunderstandings, when 10 years later
just these numerical calculations became popular. The Plankalkuel was
critized as a special logical language going too far ahead of the problems
then to be solved.

So my concept may have been too advanced at that time. But looking
at the present situation I come to the conclusion that it would have been
better to base the hardware and software development of the computer
‘on the philcsophy of the Plankalkuel from the beginning. Surely, we all
assembled here can be prcud of the achievements basing on our pioneer
activity. Nevertheless, data processing is not yet fully emancipated. There
is some confusion and trouble in the field. I think some problems could
not yet be solved satisfactorily.

On one side there are sometimes too many mathematicians influencing the
computer science in a worldly innocent manner. On the other side,
relatively primitive methods and prcgramming languages are still applied
in practice:)

At the end of my lecture would you please allow me to say something
abcut my more recent ideas. -

In the years from about 1948 to 1964 I was occupied with organizing
the development of the Zuse KG. Unfortunately, as a manager I had
hardly the time for profound theoretical considerations.

But in the last 10 years I have been able to continue my life as a
scientist again. The main objectives are new investigations on the Plan-
kalkuel in comparison with other algorithmic languages. According to my

12

subjective opinion the Plankalkuel is not only interesting from a historical
point of view but is also of great significance for solving present day
problems. The situation in the field of algorithmic languages is rather
confusing. Steuctured programming is only a partial solution. Some features
of the Plankalkue! may help to solve the problems.

Another field of my research are « Self-reproducing Systems ». But I see
the problem not from the mathematical point of view, like for instance
John v. Neumann, but as an engineer. It may be better that there is
nearly no support for the propulsicn of such ideas. Perhaps the devil
is behind it, too. But speaking about this would go far beyond the frame
of this conference.

Almost from the beginning of my work in the field of computing I had
the idea of paralell information processing, fer instance with cellular
automata. This induced me to apply this idea to theoretical physics. I
developed some ideas concerning the « Rechnender Raum » meaning some-
thing like « Calculating Cosmos ».

This general idea is of increasing interest in other places, too, for instance
in the United States. I am convinced that such investigations will gain
broader attention in the future also from physicists.

But most of these ideas are as crazy today as the idea of the computer
was 30 to 40 years ago. Therefore, it is my fate to perform these investi-
gations on a very limited scale. Nevertheless, I feel happy to be a pioneer
until the end of my days.

13

1934 1936) 1941 1945 1948

Hardware //
|) : :
Mech.

Relais Technic
o Process
i_ Control
B '—— — | ——— S — — — e —
| Electronic” (Schreyer)
v |] Plankalkiil
' | PK
Theory, Soﬁware o
General Design |
Switching Algebra =
Math. Logic :

Artificial Intelligence

Plankalkil
o (Algorithmic Language)

Light 1

14

Model constructed by Zuse until 1945

Model Year Technology ! Point Programm
£
o
: o
£ eE | 35
= co X% 9
z 55 | ©3
Z1 1938 M. M. .- float. Punched Tape
Z2 1939 R M + fixed Punched Tape
Z3 1941 R R -+ float. Punched Tape
Z4 1945 R M + float. Punched Tape
S1 1942 R R + fixed Rotary Switches
§2% 1942 R R + fixed Rotary Switches
Schreyer 1938
Schreyer 1944 + fixed
Log. 1 1944 R R Logical Punched Tape
Computer

M Mechanical Technology

R Electromechanical Relay-Technology
E Electronic Technology
Process Control

Light 2

Propositional Calculus

aAb, aVb, a

Switching Algebra
Abstract representation

b
LEE o

- -5

Mechanical

Relais Technic
S <
~ N 0)
a

a

o_l_____ b l

Electronic

Universal Information
Processing

Light 3
o

Babbage

Zuse Z1 - 74
Tape
Arithm. Program Arithm
L Unit = Unit Unit
Punched o
Card
1——» Address
o Storage Storage
Selection :
-
direct code
Program
e Information
Processor
Feedback
Program e 7
Urnig = Szz'tnputmg Program | Comp.
Unit } Unit
Storage Storage Storage

N

Logistic Computer
General Information Processing
Program-Generator)
Compiler
Associative Memory

Planfertigungs-Gerate

1945

Universal Algorithmic Language
Plankalkiil

Light 4

Punch k 4 Input Output

[] 1. Operand
Tape +
ﬁ\ 2. Operand
v Computing Unit
] Prqgram EEE— .
Unit ’ Result
Address
Selecting Storage
Unit

Model Z1 — Z4

Light 5

18

1/x

—1

0

8 |8 (8|8

0010 |0

Z3

Output
AUSGABE
Input
EINGABE

19

10

HEE

0,1

[||

Light 6

sign

r.

Exponent Mantisse

20

Storage
Cell 0 - 63

Light 7

Programs, calculated with the Computer Z3
(1941-42)

1) General Test-Programs (Testing of Arithmetic Operations and Storage-Cells)
2) Linear Equations (To the Order 3)

3) Quadratic Equations

4) Kissner-Determinant

; 7’ P T 1. Rm?
: a- ia —}——\72— b+ ib) ¢+ ic |
| |
A= | c+ic d+id’ + f+ if |
g+ ig’ h + ih’ K+ ik 4 —

V is a function of w (reduced frequence)
5) Miscellaneous

Light 8 -

21

Process Control with Zuse S2

Light 9

—0 —~——— M

Wing surfice

- Analog — digital-converter

OOOOO

Computer

Computer

s

Process-Control with
Model Zuse S2

Light 10

‘abc

¢n

3

24

T
o

yd

)

I
Ll

!

Schreyer Electronic Relais-circuits

Light 11

Step

Schreyer 769 | 1 1 7 LLL
‘Electrenic 4 LLLo
2 6 x 10 LLLooo
Computer 3 °) AL 72 L°°°tt§
Decimal to : 76 LooLLoo
Binary conversion 4 4 x 10 LooLLooo
6 LoolLooooo
5 760 LoLLLLLooo

5 3 + 9 LoolL ¢
6 7 769 LLoooooooL

Input

®
|

©
S
-

Output v
O [BRREKRIBRR K

S1.4
S1.n=n X So

S1.4

So| So | So |So

So So So So

Tree

Package.
Decimal number with 3 digits

S1.4 S1.4

So

So

Floating-point binary number

A14.0 = (So, So, S1.8, S1.20)

c
o
n
; Exponent Mantissa
©
[
=
)
Ko Ki K2

: K3
OO T[0T - []

26

Light 13

List of pairs [Graph]

NOT IO
i [
NN NOT

O @

r~
(9]

e i
NN

Light 14

W<
=

Light 15

28

—p< w<

Input-Output Specification (Randauszug)

R(V , V)= (R , R, R

Vv o 1 o 1 2
S | mxo nxao (m4+n)xoc 1.n 0O
Input: V list with m elements Vv

o 1

list with n elements

Output: R list with m -+ n elements R binary number R predicat
1

o

2

If the program P3.7 has this input-output specification, then

R3.7(Z , Z) = 2
Vv 9 11 12
S 1n mXo nxaga 1.n

means: the result R of the program P3.7 applied to the objects Z and Z

1

is assigned to Z. (Z, Z and Z are local objects).
2 91 12 .

9 11

Objects of a program

\'% input values
z local values (Zwischenwerte)
R results
& Constants (Reference level o)
i I» local values for the variation of indices and so on
X, Y bounded variable used in the predicate calculus:
= corresponds to i —
Z+1=>12
- corresponds to IF... THEN...

for instance
V>V—=V=R
o 1 o o

FIN End symbol

Z— FIN conditional end symbol
o

W() iterative program section

Light 16

(23

29

AA1
AA2
AA3
AA4
AAS

AA6
AA9

CA9

AA11 =

30

Data-Types (Daternarten) for Chessprograms (extract)

S1.3

2 >< $1.3
81

(AA2 AA3)
64 x AA3

CA5
= 64 X AM4

L

= (AA5, So, S1.4, AA2)
Ko
AA5

K1
So

K2
S1.4

K3
AA2

(AA2, AA2, So)

Coordinate

Point

Specification of occupation

Occupation of a special point

Field occupation

Field occupation at the start

Field occupation as AA5, but supplemented by
the point coordinates

Actual situation of the game

Field occupation

« White has the move »
Conditions for Castling

Aiming point of the last move

Situation at the start
Specification of a move

Light 17

PA160
‘ \
V o
A A
R
V o
S o
R
Y 1
S o)
| Z
" o
A A
v |
A
4
A
4
S
\ Z
\Y 4
S | o
P 160

M
(2)

(3)
(4)

OWN ©NN O=N

Conditions for checkmate or stalemate
Input-Output
R(V) = R)
o 1

|

R,
\ o
A A5 o

o

Field occupation

=2}

« The white King is-checkmate »

« The white King is stalemate »

Point occupation

-8

List of the pieces attacking the white King

V']
>
'S

Number of the pieces attacking the white King (A9 = natural
number)

« The white King is checkmate or stalemate »

« No white piece, except the King, is able to move »

Evaluation of the point, occupied by the white King (Z).
o)
Formation of the list of the pieces attacking the white King (RA129, Z)
1)
The number of the attacking pieces influences the further evaluations.
If the King is not at}acked (Z = 0) or the King is able to make an evad-

2
ing move (RA148), then the program is finished (FIN)

Light 18a

31

()

(6)

(10)

(a1
(12)

32

If the King is attacked by more than one piece (Z> 1), then we have
2
checkmate or stalemate (Z). (The case of an evading move is already
3 .

taken into account by (4)).
if the white King is attacked by bne piece (Z = 1), then we have check-
2

mate or stalemate if

(7) the attacking piece cannot be captured by White without discovering
check (RA142)

(8) and in the case of free points between the attacking piece and the
King (RA19)

(9) there is no white piece being able to move to one of these points (RA152)

Investigation, if there are white pieces, except the King, being able to move

(RA150). If this is not the case, then Z is positive.

4
Condition for checkmate (R).
o
Condition for stalemate (R).
1
Light 18b

PA160

>R< >R >xR< >R >PRZ >R >R

PR

(1)

(3)

@

X XEVAX =-——Ft— =2

o o
1
JAY:] A6 A3 A4

x RA129(V , x ,Z)Ax = Z

[} o 1
o o 1.3
A4 A6 A2 A2 o O x A
N(Z)y = Z
1 2
0O % A4 9

Z=0VRA148(V) - (—,—) = (R, R) FIN
2 o] o 1
9 o A6 0 o

2 3
9 0
(7)
Z=1—> — RA142(V , Z)
2 o 1
0.0
9 A6 A2
(8) (9) .
A+ RAI9(Z ,Z) = RAIB2(V , Z ,Z) = Z
0 1 o o 1 3
0.0 o 0.0 o)
A2 A2 A6 A2 A2
10) (11) (12)
RA150(V) = Z | Z/\—]Z:>R [ZAZ = R
0 4 | 3 4 o ‘ 3 4 1
AB. o | o o o [o o o

